Characterization of Individualized Glycemic Excursions during a Standardized Bout of Hypoglycemia-Inducing Exercise and Subsequent Hypoglycemia Treatment-A Pilot Study
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
00064203
Ministry of Health, Czech Republic
PubMed
34836420
PubMed Central
PMC8619071
DOI
10.3390/nu13114165
PII: nu13114165
Knihovny.cz E-resources
- Keywords
- exercise, glycemic excursion, hypoglycemia, hypoglycemia treatment, insulin therapy, type 1 diabetes,
- MeSH
- Administration, Oral MeSH
- Exercise * MeSH
- Bicycling MeSH
- Diabetes Mellitus, Type 1 blood drug therapy MeSH
- Adult MeSH
- Glucose administration & dosage MeSH
- Hypoglycemia drug therapy MeSH
- Insulin blood MeSH
- Blood Glucose analysis MeSH
- Humans MeSH
- Pilot Projects MeSH
- Heart Rate MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Glucose MeSH
- Insulin MeSH
- Blood Glucose MeSH
The glycemic response to ingested glucose for the treatment of hypoglycemia following exercise in type 1 diabetes patients has never been studied. Therefore, we aimed to characterize glucose dynamics during a standardized bout of hypoglycemia-inducing exercise and the subsequent hypoglycemia treatment with the oral ingestion of glucose. Ten male patients with type 1 diabetes performed a standardized bout of cycling exercise using an electrically braked ergometer at a target heart rate (THR) of 50% of the individual heart rate reserve, determined using the Karvonen equation. Exercise was terminated when hypoglycemia was reached, followed by immediate hypoglycemia treatment with the oral ingestion of 20 g of glucose. Arterialized blood glucose (ABG) levels were monitored at 5 min intervals during exercise and for 60 min during recovery. During exercise, ABG decreased at a mean rate of 0.11 ± 0.03 mmol/L·min-1 (minimum: 0.07, maximum: 0.17 mmol/L·min-1). During recovery, ABG increased at a mean rate of 0.13 ± 0.05 mmol/L·min-1 (minimum: 0.06, maximum: 0.19 mmol/L·min-1). Moreover, 20 g of glucose maintained recovery from hypoglycemia throughout the 60 min postexercise observation window.
Department of Internal Medicine 2nd Medical Faculty Charles University 150 00 Prague Czech Republic
Faculty of Medicine Josip Juraj Strossmayer University of Osijek 310 00 Osijek Croatia
Institute of Computer Science Academy of Science of the Czech Republic 110 00 Prague Czech Republic
School of Food Science and Nutrition University of Leeds Leeds LS2 9JT UK
School of Medicine University of Zagreb 100 00 Zagreb Croatia
See more in PubMed
Campbell M.D., Kime N., McKenna J. Exercise and physical activity in type 1 diabetes. Lancet Diabetes Endocrinol. 2017;5:493. doi: 10.1016/S2213-8587(17)30169-9. PubMed DOI
Brazeau A.S., Rabasa-Lhoret R., Strychar I., Mircescu H. Barriers to physical activity among patients with type 1 diabetes. Diabetes Care. 2008;31:2108–2109. doi: 10.2337/dc08-0720. PubMed DOI PMC
Scott S., Kempf P., Bally L., Stettler C. Carbohydrate Intake in the Context of Exercise in People with Type 1 Diabetes. Nutrients. 2019;11:3017. doi: 10.3390/nu11123017. PubMed DOI PMC
Younk L.M., Mikeladze M., Tate D., Davis S.N. Exercise-related hypoglycemia in diabetes mellitus. Expert Rev. Endocrinol. Metab. 2011;6:93–108. doi: 10.1586/eem.10.78. PubMed DOI PMC
Campbell M.D., Walker M., Trenell M.I., Jakovljevic D.G., Stevenson E.J., Bracken R.M., Bain S.C., West D.J. Large Pre-and Postexercise Rapid-Acting Insulin Reductions Preserves Glycemia and Prevents Early-but Not Late-Onset Hypoglycemia in Patients with Type 1 Diabetes. Diabetes Care. 2013;36:2217–2224. doi: 10.2337/dc12-2467. PubMed DOI PMC
Campbell M.D., Walker M., Trenell M.I., Stevenson E.J., Turner D., Bracken R.M., Shaw J.A., West D.J. Insulin therapy and dietary adjustments to normalize glycaemia and prevent nocturnal hypoglycaemia after evening exercise in type 1 diabetes: A randomized controlled trial. BMJ Open Diabetes Res. Care. 2015;12:e000085. doi: 10.1136/bmjdrc-2015-000085. PubMed DOI PMC
Campbell M.D., Walker M., Trenell M.I., Luzio S.C., Dunseath G., Tuner D., Bracken R.M., Bain S.C., Russell M., Stevenson E.J., et al. Metabolic implications when employing heavy pre- and post-exercise rapid-acting insulin reduction to prevent hypoglycaemia in type 1 diabetes patients: A randomised clinical trial. PLoS ONE. 2014;9:e97143. doi: 10.1371/journal.pone.0097143. PubMed DOI PMC
Campbell M.D., Walker M., Trenell M.I., Stevenson E.J., Turner D., Bracken R.M., Shaw J.A., West D.J. A low glycemic index meal and bedtime snack prevents postprandial hyperglycemia and associated rises in inflammatory markers, providing protection from early but not late nocturnal hypoglycemia following evening exercise in type 1 diabetes patients. Diabetes Care. 2014;37:1845–1853. doi: 10.2337/dc14-0186. PubMed DOI
Adolfsson P., Mattsson S., Jendle J. Evaluation of glucose control when a new strategy of increased carbohydrate supply is implemented during prolonged physical exercise in type 1 diabetes. Eur. J. Appl. Physiol. 2015;115:2599–2607. doi: 10.1007/s00421-015-3251-4. PubMed DOI
Standards of Care Glycemic Targets: Standards of Medical Care in Diabetes—2021 American Diabetes Association. Diabetes Care. 2021;44((Suppl. 1)):S73–S84. doi: 10.2337/dc21-S006. PubMed DOI
Van der Weerdt A.P., Klein L.J., Visser C.A., Visser F.C., Lammertsma A.A. Use of arterialised venous instead of arterial blood for measurement of myocardial glucose metabolism during euglycaemic-hyperinsulinaemic clamping. Eur. J. Nucl. Med. Mol. Imaging. 2002;29:663–669. doi: 10.1007/s00259-002-0772-y. PubMed DOI
Malmud L.S., Fisher R.S., Knight L.C., Rock E. Scintigraphic evaluation of gastric emptying. Semin Nucl. Med. 1982;12:116–125. doi: 10.1016/S0001-2998(82)80003-2. PubMed DOI
Karvonen M.J., Kentala E., Mustala O. The effects of training on heart rate: A longitudinal study. Ann. Mcd. Exp. Bid. Fenn. 1957;35:307–315. PubMed
McAulay V., Deary I.J., Frier B.M. Symptoms of hypoglycaemia in people with diabetes. Diabet. Med. 2001;18:690–705. doi: 10.1046/j.1464-5491.2001.00620.x. PubMed DOI
Al Khalifah R.A., Suppère C., Haidar A., Rabasa-Lhoret R., Ladouceur M., Legault L. Association of aerobic fitness level with exercise-induced hypoglycaemia in Type 1 diabetes. Diabet. Med. 2016;33:1686–1690. doi: 10.1111/dme.13070. PubMed DOI
Wood S.N. Generalized Additive Models: An Introduction with R. 2nd ed. Chapman & Hall/CRC; Boca Raton, FL, USA: 2017.
Eilers P.H.C., Marx B. Flexible smoothing with B-splines and penalties. Stat. Sci. 1996;11:89–121. doi: 10.1214/ss/1038425655. DOI
García-García F., Kumareswaran K., Hovorka R., Hernando M.E. Quantifying the acute changes in glucose with exercise in type 1 diabetes: A systematic review and meta-analysis. Sports Med. 2015;45:587–599. doi: 10.1007/s40279-015-0302-2. PubMed DOI
Soo K., Furler S.M., Samaras K., Jenkins A.B., Campbell L.V., Chisholm D.J. Glycemic responses to exercise in IDDM after simple and complex carbohydrate supplementation. Diabetes Care. 1996;19:575–579. doi: 10.2337/diacare.19.6.575. PubMed DOI
Slama G., Traynard P.Y., Desplanque N., Pudar H., Dhunputh I., Letanoux M., Bornet F.R., Tchobroutsky G. The search for an optimized treatment of hypoglycemia. Carbohydrates in tablets, solutin, or gel for the correction of insulin reactions. Arch. Intern. Med. 1990;150:589–593. doi: 10.1001/archinte.1990.00390150083016. PubMed DOI
Costill D.L., Saltin B. Factors limiting gastric emptying during rest and exercise. Appl. Physiol. 1974;7:679–683. doi: 10.1152/jappl.1974.37.5.679. PubMed DOI
Fordtran J.S., Saltin B. Gastric emptying intestinal absorption during prolonged severe exercise. J. Appl. Physiol. 1967;23:331–335. doi: 10.1152/jappl.1967.23.3.331. PubMed DOI