Identification of six novel P450 oxidoreductase missense variants in Ashkenazi and Moroccan Jewish populations
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM081568
NIGMS NIH HHS - United States
GM81568
NIGMS NIH HHS - United States
PubMed
22462747
PubMed Central
PMC4270371
DOI
10.2217/pgs.12.21
Knihovny.cz E-zdroje
- MeSH
- farmakogenetika MeSH
- frekvence genu MeSH
- genetické markery MeSH
- haplotypy MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé MeSH
- missense mutace * MeSH
- molekulární modely MeSH
- NADPH-cytochrom c-reduktasa chemie genetika MeSH
- sekvenční analýza DNA MeSH
- vazebná nerovnováha MeSH
- Židé genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Izrael epidemiologie MeSH
- Maroko etnologie MeSH
- Názvy látek
- genetické markery MeSH
- NADPH-cytochrom c-reduktasa MeSH
BACKGROUND: The enzyme NADPH-P450 oxidoreductase (POR) is the main electron donor to all microsomal CYPs. The possible contribution of common POR variants to inter- and intra-individual variability in drug metabolism is of great pharmacogenetic interest. AIM: To search for POR polymorphic alleles and estimate their frequencies in a Jewish population. MATERIALS & METHODS: We analyzed the POR gene in 301 Ashkenazi and Moroccan Jews. RESULTS: A total of 30 POR SNPs were identified, nine in the noncoding regions and 21 in the protein-coding regions (ten synonymous, 11 missense). Six of these missense variants are previously undescribed (S102P, V164M, V191M, D344N, E398A and D648N). CONCLUSION: The data collected in this study on missense POR SNPs, interpreted in light of the crystallographic structure of human POR, indicate that some POR missense variants may be potential biomarkers for future POR pharmacogenetic screening.
Zobrazit více v PubMed
Masters BS. The journey from NADPH-cytochrome P450 oxidoreductase to nitric oxide synthases. Biochem. Biophys. Res. Commun. 2005;338(1):507–519. PubMed
Shephard EA, Phillips IR, Santisteban I, et al. Isolation of a human cytochrome P-450 reductase cDNA clone and localization of the corresponding gene to chromosome 7q11.2. Ann. Hum. Genet. 1989;53(Pt 4):291–301. PubMed
Scott RR, Gomes LG, Huang N, Van Vliet G, Miller WL. Apparent manifesting heterozygosity in P450 oxidoreductase deficiency and its effect on coexisting 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 2007;92(6):2318–2322. PubMed
Wang M, Roberts DL, Paschke R, Shea TM, Masters BS, Kim JJ. Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes. Proc. Natl Acad. Sci. USA. 1997;94(16):8411–8416. PubMed PMC
Black SD, French JS, Williams CH, Jr, Coon MJ. Role of a hydrophobic polypeptide in the N-terminal region of NADPH-cytochrome P-450 reductase in complex formation with P-450LM. Biochem. Biophys. Res. Commun. 1979;91(4):1528–1535. PubMed
Xia C, Panda SP, Marohnic CC, Martasek P, Masters BS, Kim JJ. Structural basis for human NADPH-cytochrome P450 oxidoreductase deficiency. Proc. Natl Acad. Sci. USA. 2011;108(33):13486–13491. [The atomic structure of human POR is presented, as well as structures of two naturally occurring missense mutations, V492E and R457H.] PubMed PMC
Adachi M, Tachibana K, Asakura Y, Yamamoto T, Hanaki K, Oka A. Compound heterozygous mutations of cytochrome P450 oxidoreductase gene (POR) in two patients with Antley–Bixler syndrome. Am. J. Med. Genet. A. 2004;128A(4):333–339. PubMed
Arlt W, Walker EA, Draper N, et al. Congenital adrenal hyperplasia caused by mutant P450 oxidoreductase and human androgen synthesis: analytical study. Lancet. 2004;363(9427):2128–2135. [Molecular pathogenesis of the described form of congenital adrenal hyperplasia is caused by mutations in the POR gene.] PubMed
Fluck CE, Tajima T, Pandey AV, et al. Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley–Bixler syndrome. Nat. Genet. 2004;36(3):228–230. [Initial report of POR deficiency in four individuals resulting in disordered steroidogenesis with and without Antley–Bixler Syndrome and segregation of this genetic defect from FGFR deficiency.] PubMed
Fukami M, Horikawa R, Nagai T, et al. Cytochrome P450 oxidoreductase gene mutations and Antley–Bixler syndrome with abnormal genitalia and/or impaired steroidogenesis: molecular and clinical studies in 10 patients. J. Clin. Endocrinol. Metab. 2005;90(1):414–426. PubMed
Huang N, Pandey AV, Agrawal V, et al. Diversity and function of mutations in P450 oxidoreductase in patients with Antley–Bixler syndrome and disordered steroidogenesis. Am. J. Hum. Genet. 2005;76(5):729–749. PubMed PMC
Hart SN, Wang S, Nakamoto K, Wesselman C, Li Y, Zhong XB. Genetic polymorphisms in cytochrome P450 oxidoreductase influence microsomal P450-catalyzed drug metabolism. Pharmacogenet. Genomics. 2008;18(1):11–24. PubMed
Huang N, Agrawal V, Giacomini KM, Miller WL. Genetics of P450 oxidoreductase: sequence variation in 842 individuals of four ethnicities and activities of 15 missense mutations. Proc. Natl Acad. Sci. USA. 2008;105(5):1733–1738. [The analysis of the POR gene in a population of 842 healthy unrelated individuals in four ethnic groups: 218 African–Americans, 260 Caucasian–Americans, 179 Chinese–Americans and 185 Mexican–Americans.] PubMed PMC
Saito Y, Yamamoto N, Katori N, et al. Genetic polymorphisms and haplotypes of POR, encoding cytochrome P450 oxidoreductase, in a Japanese population. Drug Metab. Pharmacokinet. 2011;26(1):107–116. [Analyzes genetic variations and the haplotype structures of the POR gene in 235 Japanese subjects.] PubMed
Fluck CE, Mallet D, Hofer G, et al. Deletion of P399_E401 in NADPH cytochrome P450 oxidoreductase results in partial mixed oxidase deficiency. Biochem. Biophys. Res. Commun. 2011;412(4):572–577. PubMed
Shen AL, O'Leary KA, Kasper CB. Association of multiple developmental defects and embryonic lethality with loss of microsomal NADPH-cytochrome P450 oxidoreductase. J. Biol. Chem. 2002;277(8):6536–6541. PubMed
Ribes V, Otto DM, Dickmann L, et al. Rescue of cytochrome P450 oxidoreductase (Por) mouse mutants reveals functions in vasculogenesis, brain and limb patterning linked to retinoic acid homeostasis. Dev. Biol. 2007;303(1):66–81. PubMed
Henderson CJ, Otto DM, Carrie D, et al. Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase. J. Biol. Chem. 2003;278(15):13480–13486. PubMed
Feidt DM, Klein K, Nussler A, Zanger UM. RNA-interference approach to study functions of NADPH: cytochrome P450 oxidoreductase in human hepatocytes. Chem. Biodivers. 2009;6(11):2084–2091. PubMed
Antley R, Bixler D. Trapezoidocephaly, midfacial hypoplasia and cartilage abnormalities with multiple synostoses and skeletal fractures. Birth Defects Orig. Artic. Ser. 1975;11(2):397–401. PubMed
Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin. Pharmacokinet. 1997;32(3):210–258. PubMed
Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science. 1999;286(5439):487–491. PubMed
Gomes AM, Winter S, Klein K, et al. Pharmacogenomics of human liver cytochrome P450 oxidoreductase: multifactorial analysis and impact on microsomal drug oxidation. Pharmacogenomics. 2009;10(4):579–599. PubMed
Need AC, Goldstein DB. Next generation disparities in human genomics: concerns and remedies. Trends Genet. 2009;25(11):489–494. PubMed
Gurwitz D, Lunshof JE. Personalized pharmacotherapy: genotypes, biomarkers, and beyond. Clin. Pharmacol. Ther. 2009;85(2):142. PubMed
Gurwitz D, Kimchy O, Bonne-Tamir B. Martinus Nijhoff. The Netherlands; Leiden: 2003. The Israeli DNA and cell line collection: a human diversity repository. In: Populations and Genetics. Legal and Socio-Ethical Perspectives.
Ulbrichova-Douderova D, Martasek P. Detection of DNA variations in the future science group polymorphic hydroxymethylbilane synthase gene by high-resolution melting ana lysis. Anal. Biochem. 2009;395(1):41–48. PubMed
Kimmel G, Shamir R. GERBIL: genotype resolution and block identification using likelihood. Proc. Natl Acad. Sci. USA. 2005;102(1):158–162. PubMed PMC
Davidovich O, Kimmel G, Shamir R. GEVALT: an integrated software tool for genotype ana lysis. BMC Bioinformatics. 2007;8:36. PubMed PMC
Eichelbaum M, Ingelman-Sundberg M, Evans WE. Pharmacogenomics and individualized drug therapy. Annu. Rev. Med. 2006;57:119–137. PubMed
Budnitz DS, Pollock DA, Weidenbach KN, Mendelsohn AB, Schroeder TJ, Annest JL. National surveillance of emergency department visits for outpatient adverse drug events. JAMA. 2006;296(15):1858–1866. PubMed
Woodcock J, Lesko LJ. Pharmacogenetics – tailoring treatment for the outliers. N. Engl. J. Med. 2009;360(8):811–813. PubMed
Zanger UM, Turpeinen M, Klein K, Schwab M. Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal. Bioanal. Chem. 2008;392(6):1093–1108. PubMed
Behar DM, Metspalu E, Kivisild T, et al. Counting the founders: the matrilineal genetic ancestry of the Jewish diaspora. PLoS ONE. 2008;3(4):e2062. PubMed PMC
Behar DM, Yunusbayev B, Metspalu M, et al. The genome-wide structure of the Jewish people. Nature. 2010;466(7303):238–242. PubMed
Agrawal V, Huang N, Miller WL. Pharmacogenetics of P450 oxidoreductase: effect of sequence variants on activities of CYP1A2 and CYP2C19. Pharmacogenet. Genomics. 2008;18(7):569–576. PubMed
Gomes LG, Huang N, Agrawal V, Mendonca BB, Bachega TA, Miller WL. The common P450 oxidoreductase variant A503V is not a modifier gene for 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 2008;93(7):2913–2916. PubMed PMC
Agrawal V, Choi JH, Giacomini KM, Miller WL. Substrate-specific modulation of CYP3A4 activity by genetic variants of cytochrome P450 oxidoreductase. Pharmacogenet. Genomics. 2010;20(10):611–618. [The functional effects of POR gene variants on CYP enzyme activity depend on the electron recipient specific characteristics.] PubMed PMC
Sandee D, Morrissey K, Agrawal V, et al. Effects of genetic variants of human P450 oxidoreductase on catalysis by CYP2D6 in vitro. Pharmacogenet. Genomics. 2010;20(11):677–686. PubMed PMC
Sahakitrungruang T, Huang N, Tee MK. Clinical, genetic, and enzymatic characterization of P450 oxidoreductase deficiency in four patients. J. Clin. Endocrinol. Metab. 2009;94(12):4992–5000. PubMed PMC
Fluck CE, Mullis PE, Pandey AV. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism. Biochem. Biophys. Res. Commun. 2010;401(1):149–153. PubMed
Mast N, Liao WL, Pikuleva IA, Turko IV. Combined use of mass spectrometry and heterologous expression for identification of membrane-interacting peptides in cytochrome P450 46A1 and NADPH-cytochrome P450 oxidoreductase. Arch. Biochem. Biophys. 2009;483(1):81–89. PubMed PMC
Nicolo C, Fluck CE, Mullis PE, Pandey AV. Restoration of mutant cytochrome P450 reductase activity by external flavin. Mol. Cell. Endocrinol. 2010;321(2):245–252. PubMed
Soneda S, Yazawa T, Fukami M, et al. Proximal promoter of the cytochrome P450 oxidoreductase gene: identification of microdeletions involving the untranslated exon 1 and critical function of the SP1 binding sites. J. Clin. Endocrinol. Metab. 2011;96(11):E1881–E1887. PubMed
Tee MK, Huang N, Damm I, Miller WL. Transcriptional regulation of the human P450 oxidoreductase gene: hormonal regulation and influence of promoter polymorphisms. Mol. Endocrinol. 2011;25(5):715–731. PubMed PMC
Scott RR, Miller WL. Genetic and clinical features of P450 oxidoreductase deficiency. Horm. Res. 2008;69(5):266–275. PubMed
Dhir V, Ivison HE, Krone N, et al. Differential inhibition of CYP17A1 and CYP21A2 activities by the P450 oxidoreductase mutant A287P. Mol. Endocrinol. 2007;21(8):1958–1968. PubMed
Marohnic CC, Panda SP, Martasek P, Masters BS. Diminished FAD binding in the Y459H and V492E Antley–Bixler syndrome mutants of human cytochrome P450 reductase. J. Biol. Chem. 2006;281(47):35975–35982. [Discusses the restoration, by external flavin addition, of diminished POR activity due to selected mutations.] PubMed
Marohnic C, Panda SP, McCammon K, Rueff J, Masters BS, Kranendonk M. Human cytochrome P450 oxidoreductase deficiency caused by the Y181D mutation: molecular consequences and rescue of defect. Drug Metab. Dispos. 2010;38(2):332–340. PubMed PMC
Oneda B, Crettol S, Sirot EJ, Bochud M, Ansermot N, Eap CB. The P450 oxidoreductase genotype is associated with CYP3A activity in vivo as measured by the midazolam phenotyping test. Pharmacogenet. Genomics. 2009;19(11):877–883. PubMed
Patki KC, Von Moltke LL, Greenblatt DJ. In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes P450: role of CYP3A4 and CYP3A5. Drug Metab. Dispos. 2003;31(7):938–944. PubMed
De Jonge H, Metalidis C, Naesens M, Lambrechts D, Kuypers DR. The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics. 2011;12(9):1281–1291. [Demonstrates that the POR*28 SNP is associated with additional increases in tacrolimus dose requirements in patients carrying a CYP3A5*1 allele.] PubMed
Tomalik-Scharte D, Maiter D, Kirchheiner J, Ivison HE, Fuhr U, Arlt W. Impaired hepatic drug and steroid metabolism in congenital adrenal hyperplasia due to P450 oxidoreductase deficiency. Eur. J. Endocrinol. 2010;163(6):919–924. PubMed PMC
Moutinho D, Marohnic CC, Panda SP, Rueff J, Masters BS, Kranendonk M. Altered human CYP3A4 activity caused by Antley–Bixler syndrome-related variants of NADPH-cytochrome P450 oxidoreductase measured in a robust in vitro system. Drug Metab. Dispos. 2012 doi:10.1124/dmd.111.042820 (Epub ahead of print) PubMed PMC
Human Cytochrome P450 (CYP) Allele Nomenclature Committee. www.cypalleles.ki.se/por.htm.
The National Laboratory for Genetics of the Israeli Population at Tel Aviv University. www.tau.ac.il/medicine/NLGIP/nlgip.htm.
The SNP Consortium. www.ncbi.nlm.nih.gov/projects/SNP.
BioVentures. www.bioventures.com/products/dmg/por.