Pentraxin 3(PTX 3): an endogenous modulator of the inflammatory response
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
22577258
PubMed Central
PMC3337627
DOI
10.1155/2012/920517
Knihovny.cz E-zdroje
- MeSH
- Aspergillus fumigatus metabolismus MeSH
- ateroskleróza metabolismus MeSH
- C-reaktivní protein genetika fyziologie MeSH
- infarkt myokardu metabolismus MeSH
- kardiovaskulární nemoci krev metabolismus MeSH
- komplement MeSH
- lidé MeSH
- myši MeSH
- neutrofily metabolismus MeSH
- přirozená imunita MeSH
- reperfuzní poškození MeSH
- sérový amyloidový protein genetika fyziologie MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- C-reaktivní protein MeSH
- komplement MeSH
- PTX3 protein MeSH Prohlížeč
- sérový amyloidový protein MeSH
Inflammatory or anti-inflammatory? That is the question as far as the acute-phase response and its mediators, the pentraxins, are concerned. Only some ten years ago, the classical or short pentraxin C-reactive protein and the newly discovered long pentraxin PTX3 were considered to exert most of the detrimental effects of acute inflammation, whether microbial or sterile in origin. However, accumulating evidence suggests an at least dichotomous, context-dependent outcome attributable to the pentraxins, if not a straightforward anti-inflammatory nature of the acute-phase response. This paper is focused on the inherent effects of pentraxin 3 in inflammatory responses, mainly in coronary artery disease and in Aspergillus fumigatus infection. Both are examples of inflammatory reactions in which PTX3 is substantially involved; the former sterile, the latter infectious in origin. Apart from different inducing noxae, similarities in the pathogenesis of the two are striking. All the same, the introductory question still persists: is the ultimate impact of PTX3 in these conditions inflammatory or anti-inflammatory, paradoxical as the latter might appear? We try to provide an answer such as it emerges in the light of recent findings.
Zobrazit více v PubMed
Medzhitov R, Janeway C., Jr. Advances in immunology: innate immunity. The New England Journal of Medicine. 2000;343(5):338–344. PubMed
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801. PubMed
Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response. Nature. 2006;442(7098):39–44. PubMed
Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nature Reviews Immunology. 2006;6(7):508–519. PubMed
Kono H, Rock KL. How dying cells alert the immune system to danger. Nature Reviews Immunology. 2008;8(4):279–289. PubMed PMC
Murphy JE, Tedbury PR, Homer-Vanniasinkam S, Walker JH, Ponnambalam S. Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis. 2005;182(1):1–15. PubMed
Lu J, Marnell LL, Marjon KD, Mold C, Du Clos TW, Sun PD. Structural recognition and functional activation of FcγR by innate pentraxins. Nature. 2008;456(7224):989–992. PubMed PMC
Bottazzi B, Doni A, Garlanda C, Mantovani A. An integrated view of humoral innate immunity: pentraxins as a paradigm. Annual Review of Immunology. 2010;28:157–183. PubMed
Pepys MB, Hirschfield GM. C-reactive protein: a critical update. Journal of Clinical Investigation. 2003;111(12):1805–1812. PubMed PMC
Bottazzi B, Garlanda C, Cotena A, et al. The long pentraxin PTX3 as a prototypic humoral pattern recognition receptor: interplay with cellular innate immunity. Immunological Reviews. 2009;227(1):9–18. PubMed
Bottazzi B, Vouret-Craviari V, Bastone A, et al. Multimer formation and ligand recognition by the long pentraxin PTX3. Similarities and differences with the short pentraxins C-reactive protein and serum amyloid P component. Journal of Biological Chemistry. 1997;272(52):32817–32823. PubMed
Introna M, Alles VV, Castellano M, et al. Cloning of mouse ptx3, a new member of the pentraxin gene family expressed at extrahepatic sites. Blood. 1996;87(5):1862–1872. PubMed
Basile A, Sica A, D’Aniello E, et al. Characterization of the promoter for the human long pentraxin PTX3: role of NF-κB in tumor necrosis factor-α and interleukin-1β regulation. Journal of Biological Chemistry. 1997;272(13):8172–8178. PubMed
Han B, Mura M, Andrade CF, et al. TNFα-induced long pentraxin PTX3 expression in human lung epithelial cells via JNK. Journal of Immunology. 2005;175(12):8303–8311. PubMed
Norata GD, Marchesi P, Pirillo A, et al. Long pentraxin 3, a key component of innate immunity, is modulated by high-density lipoproteins in endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology. 2008;28(5):925–931. PubMed
Doni A, Mantovani G, Porta C, et al. Cell-specific regulation of PTX3 by glucocorticoid hormones in hematopoietic and nonhematopoietic cells. Journal of Biological Chemistry. 2008;283(44):29983–29992. PubMed PMC
Jaillon S, Peri G, Delneste Y, et al. The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps. Journal of Experimental Medicine. 2007;204(4):793–804. PubMed PMC
Zernecke A, Bot I, Djalali-Talab Y, et al. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circulation Research. 2008;102(2):209–217. PubMed
Deban L, Russo RC, Sironi M, et al. Regulation of leukocyte recruitment by the long pentraxin PTX3. Nature Immunology. 2010;11(4):328–334. PubMed
Baruah P, Propato A, Dumitriu IE, et al. The pattern recognition receptor PTX3 is recruited at the synapse between dying and dendritic cells, and edits the cross-presentation of self, viral, and tumor antigens. Blood. 2006;107(1):151–158. PubMed
Doni A, Michela M, Bottazzi B, et al. Regulation of PTX3, a key component of humoral innate immunity in human dendritic cells: stimulation by IL-10 and inhibition by IFN-γ . Journal of Leukocyte Biology. 2006;79(4):797–802. PubMed
Maina V, Cotena A, Doni A, et al. Coregulation in human leukocytes of the long pentraxin PTX3 and TSG-6. Journal of Leukocyte Biology. 2009;86(1):123–132. PubMed PMC
Damazo AS, Yona S, Flower RJ, Perretti M, Oliani SM. Spatial and temporal profiles for anti-inflammatory gene expression in leukocytes during a resolving model of peritonitis. Journal of Immunology. 2006;176(7):4410–4418. PubMed PMC
Peri G, Introna M, Corradi D, et al. PTX3, a prototypical long pentraxin, is an early indicator of acute myocardial infarction in humans. Circulation. 2000;102(6):636–641. PubMed
Latini R, Maggioni AP, Peri G, et al. Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction. Circulation. 2004;110(16):2349–2354. PubMed
Kotooka N, Inoue T, Aoki S, Anan M, Komoda H, Node K. Prognostic value of pentraxin 3 in patients with chronic heart failure. International Journal of Cardiology. 2008;130(1):19–22. PubMed
Suzuki S, Takeishi Y, Niizeki T, et al. Pentraxin 3, a new marker for vascular inflammation, predicts adverse clinical outcomes in patients with heart failure. American Heart Journal. 2008;155(1):75–81. PubMed
Jenny NS, Arnold AM, Kuller LH, Tracy RP, Psaty BM. Associations of pentraxin 3 with cardiovascular disease and all-cause death: the cardiovascular health study. Arteriosclerosis, Thrombosis, and Vascular Biology. 2009;29(4):594–599. PubMed PMC
Kunes P, Lonsky V, Mandak J, et al. The long pentraxin 3 in cardiac surgery: distinct responses in “on-pump” and “off-pump” patients. Scandinavian Cardiovascular Journal. 2007;41(3):171–179. PubMed
Ogawa T, Kawano Y, Imamura T, et al. Reciprocal contribution of pentraxin 3 and C-reactive protein to obesity and metabolic syndrome. Obesity. 2010;18(9):1871–1874. PubMed
Klouche M, Peri G, Knabbe C, et al. Modified atherogenic lipoproteins induce expression of pentraxin-3 by human vascular smooth muscle cells. Atherosclerosis. 2004;175(2):221–228. PubMed
Napoleone E, Di Santo A, Bastone A, et al. Long pentraxin PTX3 upregulates tissue factor expression in human endothelial cells: a novel link between vascular inflammation and clotting activation. Arteriosclerosis, Thrombosis, and Vascular Biology. 2002;22(5):782–787. PubMed
Napoleone E, Di Santo A, Peri G, et al. The long pentraxin PTX3 up-regulates tissue factor in activated monocytes: another link between inflammation and clotting activation. Journal of Leukocyte Biology. 2004;76(1):203–209. PubMed
Rolph MS, Zimmer S, Bottazzi B, Garlanda C, Mantovani A, Hansson GK. Production of the long pentraxin PTX3 in advanced atherosclerotic plaques. Arteriosclerosis, Thrombosis, and Vascular Biology. 2002;22(5):e10–e14. PubMed
Savchenko A, Imamura M, Ohashi R, et al. Expression of pentraxin 3 (PTX3) in human atherosclerotic lesions. Journal of Pathology. 2008;215(1):48–55. PubMed
Naruko T, Ueda M, Haze K, et al. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation. 2002;106(23):2894–2900. PubMed
Ionita MG, van den Borne P, Catanzariti LM, et al. High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions. Arteriosclerosis, Thrombosis, and Vascular Biology. 2010;30(9):1842–1848. PubMed
Inoue K, Sugiyama A, Reid PC, et al. Establishment of a high sensitivity plasma assay for human pentraxin3 as a marker for unstable angina pectoris. Arteriosclerosis, Thrombosis, and Vascular Biology. 2007;27(1):161–167. PubMed
Matsui S, Ishii J, Kitagawa F, et al. Pentraxin 3 in unstable angina and non-ST-segment elevation myocardial infarction. Atherosclerosis. 2010;210(1):220–225. PubMed
Kotooka N, Inoue T, Fujimatsu D, et al. Pentraxin3 is a novel marker for stent-induced inflammation and neointimal thickening. Atherosclerosis. 2008;197(1):368–374. PubMed
van Rossum AP, Pas HH, Fazzini F, et al. Abundance of the long pentraxin PTX3 at sites of leukocytoclastic lesions in patients with small-vessel vasculitis. Arthritis and Rheumatism. 2006;54(3):986–991. PubMed
Norata GD, Marchesi P, Pulakazhi Venu VK, et al. Deficiency of the long pentraxin ptx3 promotes vascular inflammation and atherosclerosis. Circulation. 2009;120(8):699–708. PubMed
Salio M, Chimenti S, Angelis ND, et al. Cardioprotective function of the long pentraxin PTX3 in acute myocardial infarction. Circulation. 2008;117(8):1055–1064. PubMed
Brambilla M, Camera M, Colnago D, et al. Tissue factor in patients with acute coronary syndromes: expression in platelets, leukocytes, and platelet-leukocyte aggregates. Arteriosclerosis, Thrombosis, and Vascular Biology. 2008;28(5):947–953. PubMed
Maugeri N, Rovere-Querini P, Slavich M, et al. Early and transient release of leukocyte pentraxin 3 during acute myocardial infarction. Journal of Immunology. 2011;187(2):970–979. PubMed
Manfredi AA, Rovere-Querini P, Bottazzi B, Garlanda C, Mantovani A. Pentraxins, humoral innate immunity and tissue injury. Current Opinion in Immunology. 2008;20(5):538–544. PubMed
Ferri LA, Maugeri N, Rovere-Querini P, et al. Anti-inflammatory action of apoptotic cells in patients with acute coronary syndromes. Atherosclerosis. 2009;205(2):391–395. PubMed
Roumenina LT, Ruseva MM, Zlatarova A, et al. Interaction of C1q with IgG1, C-reactive protein and pentraxin 3: mutational studies using recombinant globular head modules of human C1q A, B, and C chains. Biochemistry. 2006;45(13):4093–4104. PubMed PMC
Inforzato A, Peri G, Doni A, et al. Structure and function of the long pentraxin PTX3 glycosidic moiety: fine-tuning of the interaction with C1q and complement activation. Biochemistry. 2006;45(38):11540–11551. PubMed
Nauta AJ, Bottazzi B, Mantovani A, et al. Biochemical and functional characterization of the interaction between pentraxin 3 and C1q. European Journal of Immunology. 2003;33(2):465–473. PubMed
Trouw LA, Bengtsson AA, Gelderman KA, Dahlbäck B, Sturfelt G, Blom AM. C4b-binding protein and factor H compensate for the loss of membrane-bound complement inhibitors to protect apoptotic cells against excessive complement attack. Journal of Biological Chemistry. 2007;282(39):28540–28548. PubMed
Ma YJ, Doni A, Hummelshoj T, et al. Synergy between ficolin-2 and pentraxin 3 boosts innate immune recognition and complement deposition. Journal of Biological Chemistry. 2009;284(41):28263–28275. PubMed PMC
Gout E, Moriscot C, Doni A, et al. M-ficolin interacts with the long pentraxin PTX3: a novel case of cross-talk between soluble pattern-recognition molecules. Journal of Immunology. 2011;186(10):5815–5822. PubMed
Garianda C, Hirsch E, Bozza S, et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature. 2002;420(6912):182–186. PubMed
Jeannin P, Bottazzi B, Sironi M, et al. Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. Immunity. 2005;22(5):551–560. PubMed
Cotena A, Maina V, Sironi M, et al. Complement dependent amplification of the innate response to a cognate microbial ligand by the long pentraxin PTX3. Journal of Immunology. 2007;179(9):6311–6317. PubMed
Soares AC, Souza DG, Pinho V, et al. Dual function of the long pentraxin PTX3 in resistance against pulmonary infection with Klebsiella pneumoniae in transgenic mice. Microbes and Infection. 2006;8(5):1321–1329. PubMed
Segal BH. Aspergillosis. The New England Journal of Medicine. 2009;360(18):1870–1884. PubMed
Gallin JI, Zarember K. Lessons about the pathogenesis and management of aspergillosis from studies in chronic granulomatous disease. Transactions of the American Clinical and Climatological Association. 2007;118:175–185. PubMed PMC
Moalli F, Doni A, Deban L, et al. Role of complement and Fcγ receptors in the protective activity of the long pentraxin PTX3 against Aspergillus fumigatus. Blood. 2010;116(24):5170–5180. PubMed
McGeachy MJ, Cua DJ. The link between IL-23 and Th17 cell-mediated immune pathologies. Seminars in Immunology. 2007;19(6):372–376. PubMed
Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nature Immunology. 2007;8(9):950–957. PubMed
Montagnoli C, Fallarino F, Gaziano R, et al. Immunity and tolerance to Aspergillus involve functionally distinct regulatory T cells and tryptophan catabolism. Journal of Immunology. 2006;176(3):1712–1723. PubMed
Zelante T, De Luca A, Bonifazi P, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. European Journal of Immunology. 2007;37(10):2695–2706. PubMed
Tadagavadi RK, Wang W, Ramesh G. Netrin-1 regulates Th1/Th2/Th17 cytokine production and inflammation through UNC5B receptor and protects kidney against ischemia-reperfusion injury. Journal of Immunology. 2010;185(6):3750–3758. PubMed
D’Angelo C, De Luca A, Zelante T, et al. Exogenous pentraxin 3 restores antifungal resistance and restrains inflammation in murine chronic granulomatous disease. Journal of Immunology. 2009;183(7):4609–4618. PubMed
Zhou X, Robertson AK, Hjerpe C, Hansson GK. Adoptive transfer of CD4+ T cells reactive to modified low-density lipoprotein aggravates atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2006;26(4):864–870. PubMed
Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–238. PubMed
Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunology. 2005;6(11):1123–1132. PubMed
Erbel C, Chen L, Bea F, et al. Inhibition of IL-17A attenuates atherosclerotic lesion development in ApoE-deficient mice. Journal of Immunology. 2009;183(12):8167–8175. PubMed
Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121–1133. PubMed
Xie JJ, Wang J, Tang TT, et al. The Th17/Treg functional imbalance during atherogenesis in ApoE(−/−) mice. Cytokine. 2010;49(2):185–193. PubMed
Cheng X, Yu X, Ding YJ, et al. The Th17/Treg imbalance in patients with acute coronary syndrome. Clinical Immunology. 2009;127(1):89–97. PubMed
Hashmi S, Zeng QT. Role of interleukin-17 and interleukin-17-induced cytokines interleukin-6 and interleukin-8 in unstable coronary artery disease. Coronary Artery Disease. 2006;17(8):699–706. PubMed
Yang L, Anderson DE, Baecher-Allan C, et al. IL-21 and TGF-β are required for differentiation of human TH17 cells. Nature. 2008;454(7202):350–352. PubMed PMC
Volpe E, Servant N, Zollinger R, et al. A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses. Nature Immunology. 2008;9(6):650–657. PubMed
Abraham C, Cho J. Interleukin-23/Th17 pathways and inflammatory bowel disease. Inflammatory Bowel Diseases. 2009;15(7):1090–1100. PubMed
Wakashin H, Hirose K, Iwamoto I, Nakajima H. Role of IL-23-Th17 cell axis in allergic airway inflammation. International Archives of Allergy and Immunology. 2009;149(supplement 1):108–112. PubMed
Acosta-Rodriguez EV, Rivino L, Geginat J, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nature Immunology. 2007;8(6):639–646. PubMed