Interaction of organic solvents with protein structures at protein-solvent interface
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- 2-propanol chemie farmakologie MeSH
- aceton chemie farmakologie MeSH
- formamidy chemie farmakologie MeSH
- hydrofobní a hydrofilní interakce MeSH
- hydrolasy chemie MeSH
- krystalografie rentgenová MeSH
- kvarterní struktura proteinů účinky léků MeSH
- molekulární modely MeSH
- rozpouštědla chemie MeSH
- simulace molekulární dynamiky MeSH
- terciární struktura proteinů účinky léků MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2-propanol MeSH
- aceton MeSH
- formamide MeSH Prohlížeč
- formamidy MeSH
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
- rozpouštědla MeSH
- voda MeSH
The effect of non-denaturing concentrations of three different organic solvents, formamide, acetone and isopropanol, on the structure of haloalkane dehalogenases DhaA, LinB, and DbjA at the protein-solvent interface was studied using molecular dynamics simulations. Analysis of B-factors revealed that the presence of a given organic solvent mainly affects the dynamical behavior of the specificity-determining cap domain, with the exception of DbjA in acetone. Orientation of organic solvent molecules on the protein surface during the simulations was clearly dependent on their interaction with hydrophobic or hydrophilic surface patches, and the simulations suggest that the behavior of studied organic solvents in the vicinity of hyrophobic patches on the surface is similar to the air/water interface. DbjA was the only dimeric enzyme among studied haloalkane dehalogenases and provided an opportunity to explore effects of organic solvents on the quaternary structure. Penetration and trapping of organic solvents in the network of interactions between both monomers depends on the physico-chemical properties of the organic solvents. Consequently, both monomers of this enzyme oscillate differently in different organic solvents. With the exception of LinB in acetone, the structures of studied enzymes were stabilized in water-miscible organic solvents.
Zobrazit více v PubMed
Proteins. 2007 May 1;67(2):305-16 PubMed
J Comput Chem. 2002 Jul 30;23(10):977-96 PubMed
J Mol Graph. 1996 Feb;14(1):33-8, 27-8 PubMed
J Am Chem Soc. 2006 Apr 26;128(16):5516-22 PubMed
PLoS Comput Biol. 2012;8(10):e1002708 PubMed
Environ Sci Technol. 1995 Sep 1;29(9):2339-45 PubMed
Angew Chem Int Ed Engl. 2010 Aug 16;49(35):6111-5 PubMed
Environ Toxicol Chem. 2001 Dec;20(12):2681-9 PubMed
Proteins. 2002 May 15;47(3):393-402 PubMed
Crit Rev Biotechnol. 2006 Jul-Sep;26(3):165-99 PubMed
FEBS J. 2007 May;274(9):2424-36 PubMed
Biophys J. 2004 Aug;87(2):812-21 PubMed
Nature. 2001 Jan 11;409(6817):241-6 PubMed
J Phys Chem B. 2005 Apr 28;109(16):8053-63 PubMed
Biophys J. 2003 Mar;84(3):1628-41 PubMed
Curr Opin Chem Biol. 2004 Apr;8(2):150-9 PubMed
Biochemistry. 1999 Dec 7;38(49):16105-14 PubMed
Protein Eng. 1992 Apr;5(3):197-211 PubMed
Biochim Biophys Acta. 1978 Aug 7;525(2):314-24 PubMed
Chembiochem. 2013 May 10;14(7):890-7 PubMed
Curr Opin Struct Biol. 2007 Apr;17(2):199-204 PubMed
Curr Opin Biotechnol. 2005 Dec;16(6):637-43 PubMed
Philos Trans R Soc Lond B Biol Sci. 2004 Aug 29;359(1448):1287-96; discussion 1296-7, 1323-8 PubMed
Phys Chem Chem Phys. 2005 Aug 7;7(15):2942-7 PubMed
Biochemistry. 2000 Nov 21;39(46):14082-6 PubMed
J Chem Phys. 2010 Jun 21;132(23):235103 PubMed
Microbiology (Reading). 1997 Jan;143 ( Pt 1):109-115 PubMed
Trends Biotechnol. 2008 Jan;26(1):48-54 PubMed
Proteins. 1997 Mar;27(3):395-404 PubMed
Microbiol Rev. 1994 Dec;58(4):641-85 PubMed
J Biol Chem. 2003 Dec 26;278(52):52622-8 PubMed