The effect of neural noise on spike time precision in a detailed CA3 neuron model
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22778784
PubMed Central
PMC3388596
DOI
10.1155/2012/595398
Knihovny.cz E-zdroje
- MeSH
- akční potenciály fyziologie MeSH
- časové faktory MeSH
- hipokampus fyziologie MeSH
- hluk MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- modely neurologické MeSH
- nervový přenos MeSH
- neurony metabolismus fyziologie MeSH
- počítačová simulace MeSH
- pyramidové buňky fyziologie MeSH
- software MeSH
- teoretické modely MeSH
- vápníkové kanály metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- vápníkové kanály MeSH
Experimental and computational studies emphasize the role of the millisecond precision of neuronal spike times as an important coding mechanism for transmitting and representing information in the central nervous system. We investigate the spike time precision of a multicompartmental pyramidal neuron model of the CA3 region of the hippocampus under the influence of various sources of neuronal noise. We describe differences in the contribution to noise originating from voltage-gated ion channels, synaptic vesicle release, and vesicle quantal size. We analyze the effect of interspike intervals and the voltage course preceding the firing of spikes on the spike-timing jitter. The main finding of this study is the ranking of different noise sources according to their contribution to spike time precision. The most influential is synaptic vesicle release noise, causing the spike jitter to vary from 1 ms to 7 ms of a mean value 2.5 ms. Of second importance was the noise incurred by vesicle quantal size variation causing the spike time jitter to vary from 0.03 ms to 0.6 ms. Least influential was the voltage-gated channel noise generating spike jitter from 0.02 ms to 0.15 ms.
Zobrazit více v PubMed
Adrian ED, Zotterman Y. The impulses produced by sensory nerve endings—part 2. The response of a single end organ. Journal of Physiology. 1926;61:151–171. PubMed PMC
Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D. Reading a neural code. Science. 1991;252(5014):1854–1857. PubMed
Shadlen MN, Newsome WT. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. Journal of Neuroscience. 1998;18(10):3870–3896. PubMed PMC
Carandini M. Amplification of trial-to-trial response variability by neurons in visual cortex. PLoS Biology. 2004;2(9, article E264) PubMed PMC
MacKay D, McCulloch W. The limiting information capacity of a neuronal link. Bulletin of Mathematical Biophysics. 1952;14(2):127–135.
Lundstrom BN, Fairhall AL. Decoding stimulus variance from a distributional neural code of interspike intervals. Journal of Neuroscience. 2006;26(35):9030–9037. PubMed PMC
Rieke R, Warland D, de Ruyter van Steveninck R, Bialek W. Spikes: Exploring the Neural Code. Cambridge, Mass, USA: Massachusetts Institute of Technology Press; 1997.
Bair W, Koch C. Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Computation. 1996;8(6):1185–1202. PubMed
de Charms RC, Zador A. Neural representation and the cortical code. Annual Review of Neuroscience. 2000;23:613–647. PubMed
Gutkin B, Ermentrout GB, Rudolph M. Spike generating dynamics and the conditions for spike-time precision in cortical neurons. Journal of Computational Neuroscience. 2003;15(1):91–103. PubMed
Kretzberg J, Egelhaaf M, Warzecha AK. Membrane potential fluctuations determine the precision of spike timing and synchronous activity: a model study. Journal of Computational Neuroscience. 2001;10(1):79–97. PubMed
Cathala L, Brickley S, Cull-Candy S, Farrant M. Maturation of EPSCs and intrinsic membrane properties enhances precision at a cerebellar synapse. Journal of Neuroscience. 2003;23(14):6074–6085. PubMed PMC
van Rossum MC, O’Brien BJ, Smith RG. Effects of noise on the spike timing precision of retinal ganglion cells. Journal of Neurophysiology. 2003;89(5):2406–2419. PubMed
Diba K, Koch C, Segev I. Spike propagation in dendrites with stochastic ion channels. Journal of Computational Neuroscience. 2006;20(1):77–84. PubMed
Street SE, Manis PB. Action potential timing precision in dorsal cochlear nucleus pyramidal cells. Journal of Neurophysiology. 2007;97(6):4162–4172. PubMed PMC
Uzzell VJ, Chichilnisky EJ. Precision of spike trains in primate retinal ganglion cells. Journal of Neurophysiology. 2004;92(2):780–789. PubMed
Arabzadeh E, Panzeri S, Diamond ME. Deciphering the spike train of a sensory neuron: counts and temporal patterns in the rat whisker pathway. Journal of Neuroscience. 2006;26(36):9216–9226. PubMed PMC
Liu RC, Tzonev S, Rebrik S, Miller KD. Variability and information in a neural code of the cat lateral geniculate nucleus. Journal of Neurophysiology. 2001;86(6):2789–2806. PubMed
DiCaprio RA, Billimoria CP, Ludwar BC. Information rate and spike-timing precision of proprioceptive afferents. Journal of Neurophysiology. 2007;98(3):1706–1717. PubMed
Rokem A, Watzl S, Gollisch T, Stemmler M, Herz AV, Samengo I. Spike-timing precision underlies the coding efficiency of auditory receptor neurons. Journal of Neurophysiology. 2006;95(4):2541–2552. PubMed
Simmons JA, Neretti N, Intrator N, Altes RA, Ferragamo MJ, Sanderson MI. Delay accuracy in bat sonar is related to the reciprocal of normalized echo bandwidth, or Q. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(10):3638–3643. PubMed PMC
Sanderson MI, Simmons JA. Target representation of naturalistic echolocation sequences in single unit responses from the inferior colliculus of big brown bats. Journal of the Acoustical Society of America. 2005;118(5):3352–3361. PubMed
Butts DA, Weng C, Jin J, et al. Temporal precision in the neural code and the timescales of natural vision. Nature. 2007;449(7158):92–95. PubMed
Faisal AA, Selen LPJ, Wolpert DM. Noise in the nervous system. Nature Reviews Neuroscience. 2008;9(4):292–303. PubMed PMC
Frerking M, Schulte J, Wiebe SP, Stäubli U. Spike timing in CA3 pyramidal cells during behavior: implications for synaptic transmission. Journal of Neurophysiology. 2005;94(2):1528–1540. PubMed PMC
Fellous JM, Rudolph M, Destexhe A, Sejnowski TJ. Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience. 2003;122(3):811–829. PubMed PMC
Rodriguez-Molina VM, Aertsen A, Heck DH. Spike timing and reliability in cortical pyramidal neurons: effects of EPSC kinetics, input synchronization and background noise on spike timing. PLoS ONE. 2007;2(3, article no. E319) PubMed PMC
Paré D, Shink E, Gaudreau H, Destexhe A, Lang EJ. Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo . Journal of Neurophysiology. 1998;79(3):1450–1460. PubMed
Bekkers JM, Stevens CF. Quantal analysis of EPSCs recorded from small numbers of synapses in hippocampal cultures. Journal of Neurophysiology. 1995;73(3):1145–1156. PubMed
Murthy VN, Sejnowski TJ, Stevens CF. Heterogeneous release properties of visualized individual hippocampal synapses. Neuron. 1997;18(4):599–612. PubMed
Bekkers JM, Richerson G, Stevens CF. Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices. Proceedings of the National Academy of Sciences of the United States of America. 1990;87(14):5359–5362. PubMed PMC
Liu G, Choi S, Tsien RW. Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron. 1999;22(2):395–409. PubMed
Defelice LJ. Introduction to Membrane Noise. New York, NY, USA: Plenum Press; 1981.
White JA, Rubinstein JT, Kay AR. Channel noise in neurons. Trends in Neurosciences. 2000;23(3):131–137. PubMed
Schneidman E, Freedman B, Segev I. Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Computation. 1998;10(7):1679–1703. PubMed
Cannon RC, O’Donnell C, Nolan MF. Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes. PLoS Computational Biology. 2010;6(8) Article ID E1000886. PubMed PMC
Kuriscak E, Trojan S, Wünsch Z. Model of spike propagation reliability along the myelinated axon corrupted by axonal intrinsic noise sources. Physiological Research. 2002;51(3):205–215. PubMed
Faisal AA, Laughlin SB. Stochastic simulations on the reliability of action potential propagation in thin axons. PLoS Computational Biology. 2007;3(5, article E79) PubMed PMC
Manwani A, Koch C. Detecting and estimating signals in noisy cable structures, I: neuronal noise sources. Neural Computation. 1999;11(8):1797–1829. PubMed
Oren I, Mann EO, Paulsen O, Hájos N. Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro . Journal of Neuroscience. 2006;26(39):9923–9934. PubMed PMC
Lawrence JJ, Grinspan ZM, Statland JM, McBain CJ. Muscarinic receptor activation tunes mouse stratum oriens interneurones to amplify spike reliability. Journal of Physiology. 2006;571(3):555–562. PubMed PMC
Vervaeke K, Hu H, Graham LJ, Storm JF. Contrasting effects of the persistent Na+ current on neuronal excitability and spike timing. Neuron. 2006;49(2):257–270. PubMed
Koch C. Biophysics of Computation: Information Processing in Single Neurons. New York, NY, USA: Oxford University Press; 1999.
Bower JM, Koch C. Experimentalists and modelers: can we all just get along? Trends in Neurosciences. 1992;15(11):458–461. PubMed
Bower JM, Beeman D. The Book of GENESIS: Exploring Realistic Neural Models with the General Neural Simulation System. New York, NY, USA: Springer; 1995.
Traub RD, Jefferys JG, Miles R, Whittington MA, Tóth K. A branching dendritic model of a rodent CA3 pyramidal neurone. Journal of Physiology. 1994;481(1):79–95. PubMed PMC
Menschik ED, Finkel LH. Neuromodulatory control of hippocampal function: towards a model of Alzheimer’s disease. Artificial Intelligence in Medicine. 1998;13(1-2):99–121. PubMed
Kapur A, Pearce RA, Lytton WW, Haberly LB. GABA(A)-mediated IPSCs in piriform cortex have fast and slow components with different properties and locations on pyramidal cells. Journal of Neurophysiology. 1997;78(5):2531–2545. PubMed
Rapp M, Yarom Y, Segev I. Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(21):11985–11990. PubMed PMC
Bertrand S, Lacaille JC. Unitary synaptic currents between lacunosum-moleculare interneurones and pyramidal cells in rat hippocampus. Journal of Physiology. 2001;532(2):369–384. PubMed PMC
Fisher RE, Gray R, Johnston D. Properties and distribution of single voltage-gated calcium channels in adult hippocampal neurons. Journal of Neurophysiology. 1990;64(1):91–104. PubMed
Magee JC, Johnston D. Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. Journal of Physiology. 1995;487(1):67–90. PubMed PMC
Kang J, Huguenard JR, Prince DA. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons. Journal of Neurophysiology. 2000;83(1):70–80. PubMed
Lima PA, Marrion NV. Mechanisms underlying activation of the slow AHP in rat hippocampal neurons. Brain Research. 2007;1150(1):74–82. PubMed
Lancaster B, Nicoll RA, Perkel DJ. Calcium activates two types of potassium channels in rat hippocampal neurons in culture. Journal of Neuroscience. 1991;11(1):23–30. PubMed PMC
Chen X, Johnston D. Properties of single voltage-dependent K+ channels in dendrites of CA1 pyramidal neurones of rat hippocampus. Journal of Physiology. 2004;559(1):187–203. PubMed PMC
Linaro D, Storace M, Giugliano M. Accurate and fast simulation of channel noise in conductance-based model neurons by diffusion approximation. PLoS Computational Biology. 2011;2(3, article e1001102):17 pages. PubMed PMC
Hille B. Ionic Channels of Excitable Membranes. 2nd edition. Sunderland, Mass, USA: Sinauer Associates; 1992.
Coop AD, Cornelis H, Santamaria F. Dendritic excitability modulates dendritic information processing in a Purkinje cell model. Frontiers in Computational Neuroscience. 2010;4:1–10. PubMed PMC
Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology. 1952;117(4):500–544. PubMed PMC
Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes in FORTRAN: The Art of Scientific Computing. New York, NY, USA: Cambridge University Press; 1992.
MacGregor RJ. Neural and Brain Modeling. New York, NY, USA: Academic Press; 1987.
Halas R, Jukl M. On Beck’s coloring of posets. Discrete Mathematics. 2009;309(13):4584–4589.
Cleveland WS. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association. 1995;74(368):829–836.
McAllister AK, Stevens CF. Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(11):6173–6178. PubMed PMC
Nurse S, Lacaille JC. Late maturation of GABA(B) synaptic transmission in area CA1 of the rat hippocampus. Neuropharmacology. 1999;38(11):1733–1742. PubMed
Hanse E, Gustafsson B. Quantal variability at glutamatergic synapses in area CA1 of the rat neonatal hippocampus. Journal of Physiology. 2001;531(2):467–480. PubMed PMC
Mainen ZF, Sejnowski TJ. Reliability of spike timing in neocortical neurons. Science. 1995;268(5216):1503–1506. PubMed
Buracas GT, Zador AM, DeWeese MR, Albright TD. Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron. 1998;20(5):959–969. PubMed
Prut Y, Vaadia E, Bergman H, Haalman I, Slovin H, Abeles M. Spatiotemporal structure of cortical activity: properties and behavioral relevance. Journal of Neurophysiology. 1998;79(6):2857–2874. PubMed
Shadlen MN, Newsome WT. Noise, neural codes and cortical organization. Current Opinion in Neurobiology. 1994;4(4):569–579. PubMed
Buzsaki G, Chrobak JJ. Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Current Opinion in Neurobiology. 1995;5(4):504–510. PubMed
Richmond BJ, Oram MW, Wiener MC. Response features determining spike times. Neural Plasticity. 1999;6(4):133–145. PubMed PMC
Weiss T, Veh RW, Heinemann U. Dopamine depresses cholinergic oscillatory network activity in rat hippocampus. European Journal of Neuroscience. 2003;18(9):2573–2580. PubMed
Mikkonen JE, Huttunen J, Penttonen M. Contribution of a single CA3 neuron to network synchrony. NeuroImage. 2006;31(3):1222–1227. PubMed
White JA, Banks MI, Pearce RA, Kopell NJ. Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABA(A)) kinetics provide substrate for mixed gamma-theta rhythm. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(14):8128–8133. PubMed PMC
Axmacher N, Miles R. Intrinsic cellular currents and the temporal precision of EPSP-action potential coupling in CA1 pyramidal cells. Journal of Physiology. 2004;555(3):713–725. PubMed PMC
Yang Y, DeWeese MR, Otazu GH, Zador AM. Millisecond-scale differences in neural activity in auditory cortex can drive decisions. Nature Neuroscience. 2008;11(11):1262–1263. PubMed PMC
Maršálek P. Coincidence detection in the Hodgkin-Huxley equations. BioSystems. 2000;58(1–3):83–91. PubMed
Hospedales TM, van Rossum MC, Graham BP, Dutia MB. Implications of noise and neural heterogeneity for vestibulo-ocular reflex fidelity. Neural Computation. 2008;20(3):756–778. PubMed
Saarinen A, Linne ML, Yli-Harja O. Stochastic differential equation model for cerebellar granule cell excitability. PLoS Computational Biology. 2008;4(2) Article ID E1000004. PubMed PMC