Model of spike propagation reliability along the myelinated axon corrupted by axonal intrinsic noise sources
Jazyk angličtina Země Česko Médium print
Typ dokumentu upravené články, časopisecké články, práce podpořená grantem
PubMed
12234112
Knihovny.cz E-zdroje
- MeSH
- akční potenciály fyziologie MeSH
- artefakty * MeSH
- modely neurologické * MeSH
- nervová vlákna myelinizovaná fyziologie MeSH
- počítačová simulace * MeSH
- reprodukovatelnost výsledků MeSH
- stochastické procesy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- upravené články MeSH
We investigated how selected electromorphological parameters of myelinated axons influence the preservation of interspike intervals when the propagation of action potentials is corrupted by axonal intrinsic noise. Hereby we tried to determine how the intrinsic axonal noise influences the performance of axons serving as carriers for temporal coding. The strategy of this coding supposes that interspike intervals presented to higher order neurons would minimally be deprived of information included in interspike intervals at the axonal initial segment. Our experiments were conducted using a computer model of the myelinated axon constructed in a software environment GENESIS (GEneral NEural SImulation System). We varied the axonal diameter, myelin sheath thickness, axonal length, stimulation current and channel distribution to determine how these parameters influence the role of noise in spike propagation and hence in preserving the interspike intervals. Our results, expressed as the standard deviation of spike travel times, showed that by stimulating the axons with regular rectangular pulses the interspike intervals were preserved with a microsecond accuracy. Stimulating the axons with pulses imitating postsynaptic currents, greater changes of interspike intervals were found, but the influence of implemented noise on the jitter of interspike intervals was approximately the same.
The effect of neural noise on spike time precision in a detailed CA3 neuron model