Gene flow among populations of two rare co-occurring fern species differing in ploidy level
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23029277
PubMed Central
PMC3447768
DOI
10.1371/journal.pone.0045855
PII: PONE-D-12-18345
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- genetická variace MeSH
- genetické markery MeSH
- heterozygot MeSH
- inbreeding MeSH
- izoenzymy genetika MeSH
- kapradiny enzymologie genetika MeSH
- ploidie * MeSH
- rostlinné geny MeSH
- rostlinné proteiny genetika MeSH
- rozmnožování MeSH
- tok genů * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- genetické markery MeSH
- izoenzymy MeSH
- rostlinné proteiny MeSH
Differences in ploidy levels among different fern species have a vast influence on their mating system, their colonization ability and on the gene flow among populations. Differences in the colonization abilities of species with different ploidy levels are well known: tetraploids, in contrast to diploids, are able to undergo intra-gametophytic selfing. Because fertilization is a post-dispersal process in ferns, selfing results in better colonization abilities in tetraploids because of single spore colonization. Considerably less is known about the gene flow among populations of different ploidy levels. The present study examines two rare fern species that differ in ploidy. While it has already been confirmed that tetraploid species are better at colonizing, the present study focuses on the gene flow among existing populations. We analyzed the genetic structure of a set of populations in a 10×10 km study region using isoenzymes. Genetic variation in tetraploid species is distributed mainly among populations; the genetic distance between populations is correlated with the geographical distance, and larger populations host more genetic diversity than smaller populations. In the diploid species, most variability is partitioned within populations; the genetic distance is not related to geographic distance, and the genetic diversity of populations is not related to the population size. This suggests that in tetraploid species, which undergo selfing, gene flow is limited. In contrast, in the diploid species, which experience outcrossing, gene flow is extensive and the whole system behaves as one large population. Our results suggest that in ferns, the ability to colonize new habitats and the gene flow among existing populations are affected by the mating system.
Zobrazit více v PubMed
Ellstrand NC (1992) Gene Flow by Pollen - Implications for Plant Conservation Genetics. Oikos 63: 77–86.
Slatkin M (1987) Gene Flow and the Geographic Structure of Natural-Populations. Science 236: 787–792. PubMed
Newman D, Tallmon DA (2001) Experimental Evidence for Beneficial Fitness Effects of Gene Flow in Recently Isolated Populations. Conservation Biology 15: 1054–1063.
Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size - implications for plant conservation. Annual Review of Ecology and Systematics 24: 217–242.
Govindaraju DR (1988) A note on the relationship between outcrossing rate and gene flow in plants.Heredity. 61: 401–404.
Duminil J, Hardy OJ, Petit RJ (2009) Plant traits correlated with generation time directly affect inbreeding depression and mating system and indirectly genetic structure. BMC Evolutionary Biology 9: 177. PubMed PMC
Lloyd RM (1974) Reproductive Biology and Evolution in Pteridophyta. Annals of the Missouri Botanical Garden 61: 318–331.
Peck JH, Peck CJ, Farrar DR (1990) Influences of Life-History Attributes on Formation of Local and Distant Fern Populations. American Fern Journal 80: 126–142.
Lott MS, Volin JC, Pemberton RW, Austin DE (2003) The reproductive biology of the invasive ferns Lygodium microphyllum and L.japonicum (Schizaeaceae): Implications for invasive potential. American Journal of Botany 90: 1144–1152. PubMed
Schneller JJ, Holderegger R (1996) Genetic variation in small, isolated fern populations. Journal of Vegetation Science 7: 113–120.
Suter M, Schneller JJ, Vogel JC (2000) Investigations into the genetic variation, population structure, and breeding systems of the fern Asplenium trichomanes subsp. quadrivalens . International Journal of Plant Sciences 161: 233–244. PubMed
Wubs ERJ, de Groot, G ADuring HJ, Vogel JC, Grundmann M, et al. (2010) Mixed mating system in the fern Asplenium scolopendrium: implications for colonization potential. Annals of Botany 106: 583–590. PubMed PMC
Kang M, Huang HW, Jiang MX, Lowe AJ (2008) Understanding population structure and historical demography in a conservation context: population genetics of an endangered fern. Diversity and Distributions 14: 799–807.
Pryor KV, Young JE, Rumsey FJ, Edwards KJ, Bruford MW, et al. (2001) Diversity, genetic structure and evidence of outcrossing in British populations of the rock fern Adiantum capillus-veneris using microsatellites. Molecular Ecology 10: 1881–1894. PubMed
Soltis DE, Soltis PS (1992) The Distribution of Selfing Rates in Homosporous Ferns. American Journal of Botany 79: 97–100.
Vogel JC, Rumsey FJ, Schneller JJ, Barrett JA, Gibby M (1999) Where are the glacial refugia in Europe? Evidence from pteridophytes. Biological Journal of the Linnean Society 66: 23–37.
Templeton AR (1998) Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Molecular Ecology 7: 381–397. Available:<Go to ISI>://WOS: 000073797200003. PubMed
Dong YH, Gituru RW, Wang QF (2010) Genetic variation and gene flow in the endangered aquatic fern Ceratopteris pteridoides in China, and conservation implications. Annales Botanici Fennici 47: 34–44.
Ranker TA (1992) Genetic Diversity, Mating Systems, and Interpopulation Gene Flow in Neotropical Hemionitispalmata L (Adiantaceae).
Soltis PS, Soltis DE (1988) Estimated Rates of Intragametophytic Selfing in Lycopods. American Journal of Botany 75: 248–256.
Tájek P, Bucharová A, Munzbergová Z (2011) Limitation of distribution of two rare ferns in fragmented landscape. Acta Oecologica-International Journal of Ecology 37: 495–502.
Bucharová A, Münzbergová Z, Tájek P (2010) Population Biology of Two Rare Fern Species: Long Life and Long-Lasting Stability. American Journal of Botany 97: 1260–1271. PubMed
Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, et al... (1980) Flora Europaea Cambridge University Press.
Natura 2000 website. Available: ec.europa.eu/environment/nature/natura2000. Accessed 2008 Sep 8.
Lovis JD (1955) Asplenium adulterinum and its probable parents. Proc Bot Soc Br Isl 1: 2.
Hejný S, Slavík H (1980) Flora of Czech Republic (Květena České Republiky).
Tájek P (2003) Serpentine outcrops in Slavkovský les in view of island biogeography. (Hadcové výchozy ve Slavkovském lese z pohledu ostrovní biogeografie). Diploma thesis.
Dias PMB, Pretz VF, Dall’Agnol M, Schifino-Wittmann MT, Zuanazzi JA (2008) Analysis of genetic diversity in the core collection of red clover (Trifolium pratense) with isozyme and RAPD markers. Crop Breeding and Applied Biotechnology 8: 202–211.
Schluter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Molecular Ecology Notes 6: 569–572.
Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567. PubMed
Hood GM (2010) PopTools version 3.2.3. http://www.poptools.org/, 22.6.2011.
Nei M (1987) Molecular Evolutionary Genetics. New York: Columbia University Press. p.
Excoffier L, Smouse PE, Quattro JM (1992) Analysis of Molecular Variance Inferred from Metric Distances among DNA Haplotypes - Application to Human Mitochondrial-DNA Restriction Data. Genetics 131: 479–491. PubMed PMC
Smouse PE, Long JC, Sokal RR (1986) Multiple-Regression and Correlation Extensions of the Mantel Test of Matrix Correspondence. Systematic Zoology 35: 627–632.
R Development Core Team (2009) R: A Language and Environment for Statistical Computing.
Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany 129: 1.
Masuyama S, Watano Y (1990) Trends for inbreeding in polyploid pteridophytes. Plant Species Biology 5: 13–17.
Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In: Brown ADH, Clegg MT, Kahler AL, Weit BS, editors. Plant population genetics, breeding, and genetic resources. 43–63.
Soltis DE, Soltis PS (1989) Polyploidy, breeding system, and genetic differentiation in homosporous pteridophytes. In: Soltis DE, Soltis PS, editors. Isozymes in Plant Biology. Portland: Dioscorides Press. 241–258.
Schneller JJ, Holderegger R (1997) Vigor and survival of inbred and outbred progeny of Athyrium filix-femina. International Journal of Plant Sciences 158: 79–82.
Landergott U, Holderegger R, Kozlowski G, Schneller JJ (2001) Historical bottlenecks decrease genetic diversity in natural populations of Dryopteris cristata . Heredity 87: 344–355. PubMed
Hooper EA, Haufler CH (1997) Genetic diversity and breeding system in a group of neotropical epiphytic ferns (Pleopeltis; Polypodiaceae). American Journal of Botany 84: 1664–1674. PubMed
Maki M, Asada YJ (1998) High genetic variability revealed by allozymic loci in the narrow endemic fern Polystichum otomasui (Dryopteridaceae). Heredity 80: 604–610.
Schneller J, Liebst B (2007) Patterns of variation of a common fern (Athyrium filix-femina; Woodsiaceae): Population structure along and between altitudinal gradients. American Journal of Botany 94: 965–971. PubMed
Hunt HV, Ansell SW, Russell SJ, Schneider H, Vogel JC (2009) Genetic diversity and phylogeography in two diploid ferns, Asplenium fontanum subsp fontanum and A. petrarchae subsp bivalens, in the western Mediterranean. Molecular Ecology 18: 4940–4954. PubMed
Schneller JJ (1996) Outbreeding depression in the fern Asplenium ruta-muraria L: Evidence from enzyme electrophoresis, meiotic irregularities and reduced spore viability. Biological Journal of the Linnean Society 59: 281–295.