Environmental margin and island evolution in Middle Eastern populations of the Egyptian fruit bat
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
23094994
DOI
10.1111/mec.12078
Knihovny.cz E-resources
- MeSH
- Bayes Theorem MeSH
- Chiroptera genetics MeSH
- Genetic Variation MeSH
- Genotype MeSH
- Microsatellite Repeats MeSH
- DNA, Mitochondrial genetics MeSH
- Evolution, Molecular * MeSH
- Molecular Sequence Data MeSH
- Islands MeSH
- Genetics, Population * MeSH
- Sequence Analysis, DNA MeSH
- Cluster Analysis MeSH
- Gene Flow MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Islands MeSH
- Middle East MeSH
- Africa, Eastern MeSH
- Names of Substances
- DNA, Mitochondrial MeSH
Here, we present a study of the population genetic architecture and microevolution of the Egyptian fruit bat (Rousettus aegyptiacus) at the environmental margins in the Middle East using mitochondrial sequences and nuclear microsatellites. In contrast to the rather homogenous population structure typical of cave-dwelling bats in climax tropical ecosystems, a relatively pronounced isolation by distance and population diversification was observed. The evolution of this pattern could be ascribed to the complicated demographic history at higher latitudes related to the range margin fragmentation and complex geomorphology of the studied area. Lineages from East Africa and Arabia show divergent positions. Within the northwestern unit, the most marked pattern of the microsatellite data set is connected with insularity, as demonstrated by the separate status of populations from Saharan oases and Cyprus. These demes also exhibit a reduction in genetic variability, which is presumably connected with founder effects, drift and other potential factors related to island evolution as site-specific selection. Genetic clustering indicates a semipermeability of the desert barriers in the Sahara and Arabian Peninsula and a corridor role of the Nile Valley. The results emphasize the role of the island environment in restricting the gene flow in megabats, which is also corroborated by biogeographic patterns within the family, and suggests the possibility of nascent island speciation on Cyprus. Demographic analyses suggest that the colonization of the region was connected to the spread of agricultural plants; therefore, the peripatric processes described above might be because of or strengthened by anthropogenic changes in the environment.
References provided by Crossref.org
GENBANK
JX198427, JX198428, JX198429, JX198430, JX198431, JX198432, JX198433, JX198434, JX198435, JX198436, JX198437, JX198438, JX198439, JX198440, JX198441, JX198442, JX198443, JX198444, JX198445, JX198446, JX198447, JX198448, JX198449, JX198450, JX198451, JX198452, JX198453, JX198454, JX198455, JX198456, JX198457, JX198458, JX198459, JX198460, JX198461, JX198462, JX198463, JX198464, JX198465, JX198466, JX198467, JX198468, JX198469, JX198470, JX198471, JX198472, JX198473, JX198474, JX198475, JX198476, JX198477, JX198478, JX198479, JX198480, JX198481, JX198482, JX198483, JX198484, JX198485, JX198486, JX198487, JX198488, JX198489, JX198490, JX198491, JX198492, JX198493, JX198494, JX198495, JX198496, JX198497, JX198498, JX198499, JX198500, JX198501, JX198502, JX198503, JX198504, JX198505