Spatial networks differ when food supply changes: Foraging strategy of Egyptian fruit bats
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32097434
PubMed Central
PMC7041839
DOI
10.1371/journal.pone.0229110
PII: PONE-D-19-24699
Knihovny.cz E-zdroje
- MeSH
- Chiroptera fyziologie MeSH
- ekosystém MeSH
- komunikace zvířat * MeSH
- prostorová analýza MeSH
- roční období MeSH
- rozšíření zvířat fyziologie MeSH
- šíření informací MeSH
- stravovací zvyklosti fyziologie MeSH
- zásobování potravinami statistika a číselné údaje MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Egypt MeSH
Animals are faced with a range of ecological constraints that shape their behavioural decisions. Habitat features that affect resource abundance will also have an impact, especially as regards spatial distribution, which will in turn affect associations between the animals. Here we utilised a network approach, using spatial and genetic data, to describe patterns in use of space (foraging sites) by free-ranging Egyptian fruit bats (Rousettus aegyptiacus) at the Dakhla Oasis in Egypt. We observed a decrease in home range size during spring, when food availability was lowest, which was reflected by differences in space sharing networks. Our data showed that when food was abundant, space sharing networks were less connected and more related individuals shared more foraging sites. In comparison, when food was scarce the bats had few possibilities to decide where and with whom to forage. Overall, both networks had high mean degree, suggesting communal knowledge of predictable food distribution.
Department of Botany and Zoology Masaryk University Kotlářská Brno Czech Republic
Department of Earth and Life Sciences Faculty of Sciences 2 Lebanese University Fanar Lebanon
Department of Zoology Charles University Prague Viničná Prague Czech Republic
Zobrazit více v PubMed
Krause J, Ruxton GD, Ruxton GD. Living in groups. Oxford University Press, 2002.
Ewer RF. Ethology of Mammals. Springer, London, UK; 1967.
Dickens WT, Cohen JL. Instinct and choice: A framework for analysis In: Coll CG, Mahwah NJ (eds) Nature and Nurture: The Complex Interplay of Genetic and Environmental Influences on Human Behavior and Development. Erlbaum, Hillsdale, NJ, USA; 2003.
Buss D. Evolutionary Psychology: The New Science of the Mind, 3rd ed, Boston, MA, USA; 2008.
Thurfjell H, Ciuti S, Boyce MS. Learning from the mistakes of others: How female elk (Cervus elaphus) adjust behaviour with age to avoid hunters. PLoS ONE. 2017; 12(6):e0178082 10.1371/journal.pone.0178082 PubMed DOI PMC
Gould JL, Marler P. Learning by instinct. Sci Am. 1987; 256(1):74–85.
Mueller T, O’Hara RBO, Converse SJ, Urbanek RP, Fagan WF. Social learning of migratory performance. Science. 2013; 341:999–1002. 10.1126/science.1237139 PubMed DOI
Wright GS, Wilkinson GS, Moss CF. Social learning of a novel foraging task by big brown bats, Eptesicus fuscus. Anim Behav. 2011; 82(5):1075–1083. 10.1016/j.anbehav.2011.07.044 PubMed DOI PMC
Bonnie KE, Earley RL. Expanding the scope for social information use. Anim Behav. 2007; 74:171–181.
Hoppitt W, Laland KN. Social learning: an introduction to mechanisms, methods and models. Princeton University Press, 2013.
Laidre ME. How rugged individualists enable one another to find food and shelter: field experiments with tropical hermit crabs. Proc R Soc B Biol Sci. 2010; 277(1686):1361–1369. PubMed PMC
Reader SM, Kendal JR, Laland KN. Social learning of foraging sites and escape routes in the Trinidadian guppies. Anim Behav. 2003; 66:729–739.
Nicol CJ, Pope SJ. Social learning in sibling pigs. Appl Anim Behav Sci. 1994; 40,31–43.
Judd TM, Sherman PW. Naked mole-rats recruit colonymates to food sources. Anim Behav. 1996; 52,957–969.
Wilkinson GS, Boughman JW. Social calls coordinate foraging in greater spear-nosed bats. Anim Behav. 1998; 55:337–350. 10.1006/anbe.1997.0557 PubMed DOI
Galef BG, Laland KN. Social learning in animals: empirical studies and theoretical models. Bioscience. 2005; 55:489–499.
Farine DR. Proximity as a proxy for interactions: issues of scale in social network analysis. Anim Behav. 2015; 104:1–5.
Emlen ST, Oring LW. Ecology, sexual selection and the evolution of mating systems. Science. 1977; 197:215–223. 10.1126/science.327542 PubMed DOI
Farine DR, Strandburg-Peshkin A, Berger-Wolf T, Ziebart B, Brugere I, Li J, Crofoot MC. Both nearest neighbours and long-term affiliates predict individual locations during collective movement in wild baboons. Sci Rep. 2016; 6:27704 10.1038/srep27704 PubMed DOI PMC
Bonnell TR, Clarke PM, Henzi SP, Barrett L. Individual-level movement bias leads to the formation of higher-order social structure in a mobile group of baboons. Roy Soc Open Sci. 2017; 4:170148. PubMed PMC
Getz LL. Home ranges, territoriality, and movement of the meadow vole. J Mammal. 1961; 42:24–36.
Brown JL, Orians GH. Spacing patterns in mobile animals. Annu Rev Ecol Evol Syst. 1970; 1:239–262
Clutton-Brock TH, Harvey PH. Primate ecology and social organization. J Zool. 1977; 183:1–39
Mourier J, Vercelloni J, Planes S. Evidence of social communities in a spatially structured network of a free-ranging shark species. Anim Behav. 2012; 83:389–401.
Laland KN. Social learning strategies. Anim Learn Behav. 2004; 32(1):4–14. PubMed
Bartolommei P, Gasperini S, Manzo E, Natali C, Ciofi C, Cozzolino R. Genetic relatedness affects socio-spatial organization in a solitary carnivore, the European pine marten. Hystrix. 2016; 27(2).
Janson CH. Aggressive competition and individual food consumption in wild brown capuchin monkeys (Cebus apella). Behav Ecol Sociobiol. 1985; 18:125–138.
van Noordwijk MA, van Schaik CP. The effects of dominance rank and group size on female lifetime reproductive success in wild long-tailed macaques, Macaca fascicularis. Primates. 1999; 40:109–134. PubMed
Sapolsky RM. The influence of social hierarchy on primate health. Science. 2005; 308:648–652. 10.1126/science.1106477 PubMed DOI
Silk JB, Beehner JC, Berman TJ, Crockford C, Engh AL, Moscovice LR, et al. Strong and consistent social bonds enhance the longevity of female baboons. Curr Biol. 2010; 20:1359–1361. 10.1016/j.cub.2010.05.067 PubMed DOI
Kerth G, Wagner M, König B. Roosting together, foraging apart: information transfer about food is unlikely to explain sociality in female Bechstein’s bats (Myotis bechsteinii). Behav Ecol Sociobiol. 2001; 50:283–291.
Melber M, Fleischmann D, Kerth G. F emale Bechstein’s bats share foraging sites with maternal kin but do not forage together with them–results from a long‐term study. Ethology. 2013; 119(9):793–801.
Rossiter SJ, Jones G, Ransome RD, Barratt EM. Relatedness structure and kin-biased foraging in the greater horseshoe bat (Rhinolophus ferrumequinum). Behav Ecol Sociobiol. 2002; 51(6):510–518.
Egert-Berg K, Hurme ER, Greif S, Goldstein A, Harten L, Herrera MLG, et al. Resource Ephemerality Drives Social Foraging in Bats. Curr Biol. 2018; 28(22):3667–3673. 10.1016/j.cub.2018.09.064 PubMed DOI
Geoffroy Saint-Hilaire E. Description des roussettes et des c’ephalotes, deux nouveau genres de la famille des chauves-souris. Annales du Museum d’Histoire Naturelle. 1810; 15:86–108.
Benda P, Abi-Said M, Bartonička T, Bilgin R, Faizolahi K, Lučan RK, et al. Rousettus aegyptiacus (Pteropodidae) in the Palaearctic: list of records and revision of the distribution range. Vespertilio. 2011; 15(1):3–36.
Kwiecinski GG, Griffiths TA. Rousettus egyptiacus. Mammalian Species. 1999; (611):1–9.
Lučan RK, Bartonička T, Benda P, Bilgin R, Jedlička P, Nicolaou H, et al. Reproductive seasonality of the Egyptian fruit bat (Rousettus aegyptiacus) at the northern limits of its distribution. J Mammal. 2014; 95(5):1036–1042.
Korine C, Izhaki I, Arad Z. Is the Egyptian fruit bat Rousettus aegyptiacus a pest in Israel? An analysis of the bat’s diet and implications for its conservation. Biol Conserv. 1999; 88: 301–306.
Lučan RK, Bartonička T, Jedlička P, Řeřucha Š, Šálek M, Čížek M, et al. Spatial activity and feeding ecology of the endangered northern population of the Egyptian fruit bat (Rousettus aegyptiacus). J Mammal. 2016; 97(3):815–822.
Herrera MLG, Korine C, Fleming TH, Arad Z. Dietary implications of intrapopulation variation in nitrogen isotope composition of an old-world fruit bat. J Mammal. 2008; 89(5):1184–1190.
Ismael H. Evaluation of Present-Day Climate-Induced Desertification in El-Dakhla Oasis, Western Desert Of Egypt, Based On Integration Of MEDALUS Method, GIS And RS Techniques. Present Environment and Sustainable Development. 2015; 9(2):47–72.
Whitehead H. Analyzing animal societies: quantitative methods for vertebrate social analysis. University of Chicago Press, 2008.
Farine DR, Whitehead H. Constructing, conducting and interpreting animal social network analysis. J Anim Ecol. 2015; 84(5):1144–1163. 10.1111/1365-2656.12418 PubMed DOI PMC
Chaverri G. Comparative social network analysis in a leaf-roosting bat. Behav Ecol Sociobiol. 2010; 64(10):1619–1630.
Patriquin KJ, Leonard ML, Broders HG, Garroway CJ. Do social networks of female northern long-eared bats vary with reproductive period and age? Behav Ecol Sociobiol. 2010; 64(6):899–913.
Kerth G, Perony N, Schweitzer F. Bats are able to maintain long-term social relationships despite the high fission–fusion dynamics of their groups. Proc R Soc B Biol Sci. 2011; 278(1719):2761–2767. PubMed PMC
Johnson JS, Kropczynski JN, Lacki MJ. Social network analysis and the study of sociality in bats. Acta Chiropt. 2013; 15(1):1–17.
Wilkinson GS, Carter G, Bohn KM, Caspers B, Chaverri G, Farine D, et al. Kinship, association, and social complexity in bats. Behav Ecol Sociobiol. 2019; 73(1):7.
Ward P, Zahavi A. The importance of certain assemblages of birds as ‘‘information-centres” for food-finding. Ibis (Lond. 1859). 1973; 115:517–534.
Frank SA. Perspective: repression of competition and the evolution of cooperation. Evolution. 2003; 57:693–705. 10.1111/j.0014-3820.2003.tb00283.x PubMed DOI
Peel MC, Finlayson BL, McMahon TA. “Updated world map of the Köppen–Geiger climate classification”. Hydrol Earth Syst Sci. 2007; 11: 1633–1644.
Mutere FA. The breeding biology of Rousettus aegyptiacus living at 0°22'S. Acta Trop. 1968; 25:97–108. PubMed
Kunz TH, Parsons S. Ecological and behavioral methods for the study of bats (No. Sirsi) i9780801891472), 2009.
Řeřucha Š, Bartonička T, Jedlička P, Čížek M, Hlouša O, Lučan R, et al. The BAARA (Biological AutomAted RAdiotracking) system: A new approach in ecological field studies. PloS ONE. 2015; 10(2):e0116785 10.1371/journal.pone.0116785 PubMed DOI PMC
Environmental Systems Research Institute (ESRI). ArcGIS Release 10.6. Redlands, CA; 2018.
Worthon BJ. Kernel methods for estimating the utilisation distribution in home range studies. Ecology. 1989; 70:164–168.
Kauhala K, Tiilikainen T. Radio location error and the estimates of home-range size, movements, and habitat use: a simple field test. Ann Zool Fennici, 2002; 39:317–324.
Hulva P, Marešová T, Dundarova H, Bilgin R, Benda P, Bartonička T, et al. Environmental margin and island evolution in Middle Eastern populations of the Egyptian fruit bat. Mol Ecol. 2012; 21(24):6104–6116. 10.1111/mec.12078 PubMed DOI
Hua PY, Chen JP, Sun M, Liang B, Zhang SY, Wu DH. Characterization of microsatellite loci in fulvous fruit bat Rousettus leschenaulti. Mol Ecol Notes. 2006; 6:939–941. PubMed PMC
Andrianaivoarivelo AR, Shore GD, McGuire SM, Jenkins RK, Ramilijaona O, Louis EE, et al. Characterization of 22 microsatellite marker loci in the Madagascar rousette (Rousettus madagascariensis). Conserv Genet. 2008; 10:1025–1028.
Blouin MS. DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol Evol. 2003; 18(10):503–511.
Kalinowski ST, Wagner AP, Taper ML. ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes. 2006; 6:576–579.
Whitehead H, Dufault S. Techniques for analyzing vertebrate social structure using identified individuals: review and recommendations. Adv Stud Behav. 1999; 28:33–74.
Croft DP, James R, Krause J. Exploring animal social networks. Princeton University Press, Princeton, New Jersey; 2008.
Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Icwsm. 2009; 8(2009):361–362.
Borgatti SP, Everett MG, Freeman LC. Ucinet 6 for Windows: Software for Social Network Analysis. 2002; Harvard, MA: Analytic Technologies.
Dekker D, Krackhardt D, Snijders TA. Sensitivity of MRQAP tests to collinearity and autocorrelation conditions. Psychometrika. 2007; 72(4):563–581. 10.1007/s11336-007-9016-1 PubMed DOI PMC
Hirsch BT, Prange S, Hauver SA, Gehrt SD. Genetic relatedness does not predict racoon social network structure. Anim Behav. 2013; 85(2):463–470.
Sikes RS, Gannon WL, Animal Care and Use Committee 1 of the American Society of Mammalogists Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal. 2011; 92(1):235–253. PubMed PMC
Greville LJ, Ceballos-Vasquez A, Valdizón-Rodríguez R, Caldwell JR, Faure PA. Wound healing in wing membranes of the Egyptian fruit bat (Rousettus aegyptiacus) and big brown bat (Eptesicus fuscus). J Mammal. 2018; 99(4), 974–982.
Centeno-Cuadros A, Hulva P, Romportl D, Santoro S, Stříbná T, Shohami D, et al. Habitat use, but not gene flow, is influenced by human activities in two ecotypes of Egyptian fruit bat (Rousettus aegyptiacus). Mol Ecol. 2017; 26:6224–6237. 10.1111/mec.14365 PubMed DOI
Boutin S. Food supplementation experiments with terrestrial vertebrates: patterns, problems, and the future. Can J Zool. 1990; 68:203–220.
Adams ES (2001) Approaches to the study of territory size and shape. Annu Rev Ecol Syst 32:277–303.
Emsens WJ, Suselbeek L, Hirsch BT, Kays R, Winkelhagen AJS, Jansen PA. Effects of food availability on space and refuge use by a neotropical scatterhoarding rodent. Biotropica. 2013; 45:88–93.
Wilkinson GS. Information transfer at evening bat colonies. Anim Behav. 1992; 44:501–518.
Kerth G, Reckardt K. Information transfer about roosts in female Bechstein’s bats: an experimental field study. Proc R Soc Lond B Biol Sci. 2003; 270(1514):511–515. PubMed PMC
He P, Maldonado-Chaparro AA, Farine DR. The role of habitat configuration in shaping social structure: a gap in studies of animal social complexity. Behav Ecol Sociobiol. 2019; 73(1):9.
Boogert NJ, Reader SM, Hoppitt W, Laland KN. The origin and spread of innovations in starlings. Anim Behav. 2008; 75:1509–1518.
Morrell LJ, Croft DP, Dyer JRG, Chapman BB, Kelley JL, Laland KN, et al. Association patterns and foraging behaviour in natural and artificial guppy shoals. Anim Behav. 2008; 76:855–864.
Coussi-Korbel S, Fragaszy DM. On the relation between social dynamics and social learning. Anim Behav. 1995; 50:1441–1453.
Aplin LM, Farine DR, Morand-Ferron J, Sheldon BC. Social networks predict patch discovery in a wild population of songbirds. Proc R Soc Lond B Biol Sci. 2012; 279: 4199–4205. PubMed PMC
Itani J. The study of infra-human culture in Japan. Precultural primate behaviour. 1973; 26–50.
Watts DJ, Strogatz SH. Collective dynamics of ‘small world’ networks. Nature. 1998; 393(6684):440 10.1038/30918 PubMed DOI
Lusseau D, Wilson B, Hammond PS, Grellier K, Durban JW, Parsons KM, et al. Quantifying the influence of sociality on population structure in bottlenose dolphins. J Anim Ecol. 2006; 75:14–24. 10.1111/j.1365-2656.2005.01013.x PubMed DOI
Wiszniewski J, Allen SJ, Möller LM. Social cohesion in a hierarchically structured embayment population of Indo-Pacific bottlenose dolphins. Anim Behav. 2009; 77:1449–1457.
Lusseau D, Whitehead H, Gero S. Incorporating uncertainty into the study of animal social networks. Anim Behav. 2008; 75:1809–1815.
Guimarães PR, de Menezes MA, Baird RW, Lusseau D, Guimarães P, dos Reis SF. Vulnerability of a killer whale social network to disease outbreaks. Phys Rev E. 2007; 76(4):042901. PubMed
Drewe JA, Madden JR, Pearce GP. The social network structure of a wild meerkat population: 1. Inter-group interactions. Behav Ecol Sociobiol. 2009; 63:1295–1306.
Manno TG. Social networking in the Columbian ground squirrel, Spermophilus columbianus. Anim Behav. 2008; 75:1221–1228.
Aplin LM, Farine DR, Morand-Ferron J, Cole EF, Cockburn A, Sheldon BC. Individual personalities predict social behaviour in wild networks of great tits (Parus major). Ecol let. 2013; 16(11): 1365–1372. PubMed
Galef BG, Giraldeau L. Social influences on foraging in vertebrates: causal mechanisms and adaptive functions. Anim Behav. 2001; 61:3–15 10.1006/anbe.2000.1557 PubMed DOI
Harten L, Matalon Y, Galli N, Navon H, Dor R, Yovel Y. Persistent producer-scrounger relationships in bats. Sci Adv. 2018; 4(2): e1603293 10.1126/sciadv.1603293 PubMed DOI PMC
Dechmann DK, Kranstauber B, Gibbs D, Wikelski M. Group hunting—a reason for sociality in molossid bats? PLoS ONE. 2010; 5(2):9012. PubMed PMC
Cvikel N, Egert Berg K, Levin E, Hurme E, Borissov I, Boonman A, et al. Bats aggregate to improve prey search but might be impaired when their density becomes too high. Curr Biol. 2015; 25(2):206–211. 10.1016/j.cub.2014.11.010 PubMed DOI
figshare
10.6084/m9.figshare.11316560