Evolution of genome size in Carex (Cyperaceae) in relation to chromosome number and genomic base composition
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
23175591
PubMed Central
PMC3523652
DOI
10.1093/aob/mcs239
PII: mcs239
Knihovny.cz E-resources
- MeSH
- Carex Plant genetics MeSH
- Chromosomes, Plant genetics MeSH
- Genome Size genetics MeSH
- Phylogeny MeSH
- Genome, Plant genetics MeSH
- Markov Chains MeSH
- Monte Carlo Method MeSH
- Evolution, Molecular * MeSH
- Polyploidy MeSH
- Base Composition genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND AND AIMS: The genus Carex exhibits karyological peculiarities related to holocentrism, specifically extremely broad and almost continual variation in chromosome number. However, the effect of these peculiarities on the evolution of the genome (genome size, base composition) remains unknown. While in monocentrics, determining the arithmetic relationship between the chromosome numbers of related species is usually sufficient for the detection of particular modes of karyotype evolution (i.e. polyploidy and dysploidy), in holocentrics where chromosomal fission and fusion occur such detection requires knowledge of the DNA content. METHODS: The genome size and GC content were estimated in 157 taxa using flow cytometry. The exact chromosome numbers were known for 96 measured samples and were taken from the available literature for other taxa. All relationships were tested in a phylogenetic framework using the ITS tree of 105 species. KEY RESULTS: The 1C genome size varied between 0·24 and 1·64 pg in Carex secalina and C. cuspidata, respectively. The genomic GC content varied from 34·8 % to 40·6 % from C. secalina to C. firma. Both genomic parameters were positively correlated. Seven polyploid and two potentially polyploid taxa were detected in the core Carex clade. A strong negative correlation between genome size and chromosome number was documented in non-polyploid taxa. Non-polyploid taxa of the core Carex clade exhibited a higher rate of genome-size evolution compared with the Vignea clade. Three dioecious taxa exhibited larger genomes, larger chromosomes, and a higher GC content than their hermaphrodite relatives. CONCLUSIONS: Genomes of Carex are relatively small and very GC-poor compared with other angiosperms. We conclude that the evolution of genome and karyotype in Carex is promoted by frequent chromosomal fissions/fusions, rare polyploidy and common repetitive DNA proliferation/removal.
See more in PubMed
Ackerly DD. Analysis of traits (AOT): a module of phylocom. 2006 Version 3·1. http://phylodiversity.net/phylocom/
Ball PW, Reznicek AA Flora of North America Editorial Committee. Flora of North America, north of Mexico. Vol. 23. New York, NY: Oxford University Press; 2002. Carex Linnaeus; pp. 254–273.
Barow M, Meister A. Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry. 2002;47:1–7. PubMed
Bennett MD, Leitch IJ. Angiosperm DNA C-values database. 2010 (release 7·0, December 2010) http://www.kew.org/cvalues/
Bennetzen JL, Ma J, Devos KM. Mechanisms of recent genome size variation in flowering plants. Annals of Botany. 2005;95:127–132. PubMed PMC
Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank. Nucleic Acids Research. 2010;38 database issue. www.ncbi.nlm.nih.gov . PubMed PMC
Bhatti N, Datson P, Murray B. Chromosome number, genome size and phylogeny in the genus Schoenus (Cyperaceae) Chromosome Research. 2007;15:94–94.
Blomberg SP, Garland T., Jr Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. Journal of Evolutionary Biology. 2002;15:899–910.
Blomberg SP, Garland T, Jr, Ives AR. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 2003;57:717–745. PubMed
Bureš P. A high polyploid Eleocharis uniglumis s.l. (Cyperaceae) from central and southeastern Europe. Folia Geobotanica. 1998;33:429–439.
Bureš P, Rotreklová O, Stoneberg Holt SD, Pikner R. Cytogeographical survey of Eleocharis subser. Eleocharis in Europe 1: Eleocharis palustris. Folia Geobotanica. 2004;39:235–257.
Bureš P, Šmarda P, Hralová I, et al. Correlation between GC content and genome size in plants. Cytometry. 2007;71A:764.
Bureš P, Zedek F, Marková M. Holocentric chromosomes. In: Leitch IJ, et al., editors. Plant genome diversity. Vol. 2. Heidelberg: Springer; 2013. Physical structure, behaviour and evolution of plant genomes in press.
Charlesworth B. The evolution of sex chromosomes. Science. 1991;251:1030–1033. PubMed
Chung K-S, Hipp AL, Roalson EH. Chromosome number evolves independently of genome size in clade with non-localized centromeres (Carex: Cyperaceae) Evolution. 2012;66:2708–2722. PubMed
Doležel J, Greilhuber J. Nuclear genome size: are we getting closer? Cytometry77A. 2010:635–642. PubMed
Doležel J, Sgorbati S, Lucretti S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum. 1992;85:625–631.
Eastman JM, Alfaro ME, Joyce P, Hipp AL, Harmon LJ. A novel comparative method for identifying shifts in the rate of character evolution on trees. Evolution. 2011;65:3578–3589. PubMed
Egorova TV. St-Petersburg: St-Petersburg State Chemical-Pharmaceutical Academy/ In: Takhtajan AL, editor. The sedges (Carex L.) of Russia and adjacent states (within the limits of the former USSR) St Louis: Missouri Botanical Garden Press; 1999. 773.
Escudero M, Vargas P, Valcarcel V, Luceno M. Strait of Gibraltar: An effective gene-flow barrier for wind-pollinated Carex helodes (Cyperaceae) as revealed by DNA sequences, AFLP, and cytogenetic variation. American Journal of Botany. 2008;95:745–755. PubMed
Escudero M, Hipp AL, Waterway MJ, Valente LM. Diversification rates and chromosome evolution in the most diverse angiosperm genus of the temperate zone (Carex, Cyperaceae) Molecular Phylogenetics and Evolution. 2012;63:650–655. PubMed
Felsenstein J. Phylogenies and the comparative method. American Naturalist. 1985;125:1–15. PubMed
Ford BA, Iranpour M, Naczi RFC, Starr JR, Jerome CA. Phylogeny of Carex subg. Vignea (Cyperaceae) based on non–coding nrDNA sequence data. Systematic Botany. 2006;31:70–82.
Garland T., Jr Rate tests for phenotypic evolution using phylogenetically independent contrasts. American Naturalist. 1992;140:509–519. PubMed
Gehrke B, Martín-Bravo S, Muasya M, Luceño M. Monophyly, phylogenetic position and the role of hybridization in Schoenoxiphium Nees (Cariceae, Cyperaceae) Molecular Phylogenetics and Evolution. 2010;56:380–392. PubMed
Greilhuber J. Cytochemistry and C-values: the less-well-known world of nuclear DNA amounts. Annals of Botany. 2008;101:791–804. PubMed PMC
Greilhuber J, Doležel J, Lysák MA, Bennett MD. The origin, evolution and proposed stabilization of the terms 'Genome sizéand ‘C-value’ to describe nuclear DNA contents. Annals of Botany. 2005;95:255–260. PubMed PMC
Grime JP, Shacklock JML, Band SR. Nuclear DNA contents, shoot phenology and species co-existence in a limestone grassland community. New Phytologist. 1985;100:435–445.
Heilborn O. Chromosome numbers and dimensions, species-formation and phylogeny in the genus Carex. Hereditas. 1924;5:129–221.
Heilborn O. Notes on chromosome associations. Cytologia Jubilee Volume. 1937:9–13.
Hendrichs M, Michaelski S, Begerow D, Oberwinkler F, Hellwig FH. Phylogenetic relationships in Carex, subgenus Vignea (Cyperaceae), based on ITS sequences. Plant Systematics and Evolution. 2004;246:109–125.
Hendrichs M, Oberwinkler F, Begerow D, Bauer R. Carex, subgenus Carex (Cyperaceae): a phylogenetic approach using ITS sequences. Plant Systematics and Evolution. 2004;246:89–107.
Hipp AL. Non-uniform processes of chromosome evolution in sedges (Carex: Cyperaceae) Evolution. 2007;61:2175–2194. PubMed
Hipp AL, Reznicek AA, Rothrock PE, Weber JA. Phylogeny and classification of Carex section Ovales (Cyperaceae) International Journal of Plant Sciences. 2006;167:1029–1048.
Hipp AL, Rothrock PE, Reznicek AA, Berry PE. Changes in chromosome number associated with speciation in sedges: a phylogenetic study in Carex section Ovales (Cyperaceae) using AFLP data. Aliso. 2007;23:193–203.
Hipp AL, Rothrock PE, Roalson EH. The evolution of chromosome arrangements in Carex (Cyperaceae) Botanical Review. 2009;75:96–109.
Hralová I, Bureš P, Rotreklová O, et al. Genome size variation in species with holokinetic chromosomes (Cyperaceae) Cytometry71A. 2007:763.
International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature. 2005;436:793–800. PubMed
Leitch IJ, Soltis DE, Soltis PS, Bennett MD. Evolution of DNA amounts across land plants (Embryophyta) Annals of Botany. 2005;95:207–217. PubMed PMC
Luceño M. Estudios en la sección Spirostachyae (Drejer) Bailey del género Carex. I. Revalorización de C. helodes Link. Anales del Jardín Botánico de Madrid5B. 1992:73–81.
Luceño M, Castroviejo S. Agmatoploidy in Carex laevigata (Cyperaceae): fusion and fission of chromosomes as the mechanism of cytogenetic evolution in Iberian populations. Plant Systematics and Evolution. 1991;177:149–159.
Mayrose I, Barker MS, Otto SP. Probabilistic models of chromosome number evolution and the inference of polyploidy. Systematic Biology. 2010;59:132–144. PubMed
Meister A, Barow M. DNA base composition of plant genomes. In: Doležel J, Greilhuber J, Suda J, editors. Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Weinheim: Wiley-VCH; 2007. pp. 177–215.
Mowforth MAG. Variation in nuclear DNA amounts in flowering plants: an ecological analysis. UK: 1986. PhD Thesis University of Sheffield.
Muasya AM, Simpson DA, Verboom GA, et al. Phylogeny of Cyperaceae based on DNA sequence data: current progress and future prospects. Botanical Reviews. 2009;75:2–21.
Naczi RFC. Chromosome numbers of some eastern North American species of Carex and Eleocharis (Cyperaceae) Contributions from the University of Michigan Herbarium. 1999;22:105–119.
Nishikawa K, Furuta Y, Ishitoba K. Chromosomal evolution in genus Carex as viewed from nuclear DNA content, with special reference to its aneuploidy. Japanese Journal of Genetics. 1984;59:465–472.
Nordenskiöld H. A study of meiosis in the progeny of X-irradiated Luzula purpurea. Hereditas. 1963;49:33–47.
Oliver MJ, Petrov D, Ackerly D, Falkowski P, Schofield OM. The mode and tempo of genome size evolution in eukaryotes. Genome Research. 2007;17:594–601. PubMed PMC
Otto F. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Crissman HA, Darzynkiewicz Z, editors. Methods in cell biology. Vol. 33. New York, NY: Academic Press; 1990. pp. 105–110. Flow cytometry. PubMed
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20(289–290) (R package version 3·0-3) PubMed
Pinheiro J, Bates D, DebRoy S, Sarkar D R Development Core Team. nlme: linear and nonlinear mixed effects models. 2012 R package version 3·1-103. ftp://ftp.dk.debian.org/cran/web/packages/nlme/index.html.
Posada D, Crandall KA. Modeltest: testing the model of DNA substitution. Bioinformatics. 1998;14:817–818. PubMed
R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2012. http://www.R-project.org/
Reznicek AA. Evolution in sedges (Carex, Cyperaceae) Canadian Journal of Botany. 1990;68:1409–1432.
Roalson EH. A synopsis of chromosome number variation in the Cyperaceae. Botanical Review. 2008;74:209–393.
Roalson EH, McCubbin AG, Whitkus R. Chromosome evolution in the Cyperales. In: Columbus JT, Friar EA, Hamilton CW, et al., editors. Monocots: comparative biology and evolution. Vol. 2. Claremont, California: Rancho Santa Ana Botanic Garden; 2006. pp. 62–71. Poales.
Rohlf FJ. A comment on phylogenetic correction. Evolution. 2006;60:1509–1515. PubMed
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. PubMed
Rotreklová O, Bureš P, Řepka R, et al. Chromosome numbers of Carex (Cyperaceae) Preslia. 2011;83:25–58.
Schmid B. Karyology and hybridization in the Carex flava complex in Switzerland. Feddes Repertorium. 1982;93:23–59.
da Silva CRM, Quintas CC, Vanzela ALL. Distribution of 45S and 5S rDNA sites in 23 species of Eleocharis (Cyperaceae) Genetica. 2010;138:951–957. PubMed
Simpson DA, Furness CA, Hodkinson TR, Muasya AM, Chase MW. Phylogenetic relationships in Cyperaceae subfamily Mapanioideae inferred from pollen and plastid DNA sequence data. American Journal of Botany. 2003;90:1071–1086. PubMed
Šmarda P, Bureš P. Understanding intraspecific variation in genome size in plants. Preslia. 2010;82:41–61.
Šmarda P, Bureš P. The variation of base composition in plant genomes. In: Wendel J, Greilhuber J, Doležel J, Leitch IJ, editors. Plant genome diversity. I. Wien: Springer; 2012. pp. 209–235. Plant genomes, their residents, and their evolutionary dynamics.
Šmarda P, Bureš P, Horová L, Foggi B, Graziano R. Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Annals of Botany. 2008;101:421–433. PubMed PMC
Šmarda P, Bureš P, Šmerda J, Horová L. Measurements of genomic GC content in plant genomes with flow cytometry: a test for reliability. New Phytologist. 2012;193:513–521. PubMed
Štajner N, Bohanec B, Javornik B. Genetic variability of economically important Asparagus species as revealed by genome size analysis and rDNA ITS polymorphisms. Plant Science. 2002;162:931–937.
Starr JR, Ford BA. Phylogeny and evolution in Cariceae (Cyperaceae): current knowledge and future directions. Botanical Review. 2009;75:110–137.
Starr JR, Harris SA, Simpson DA. Phylogeny of the unispicate taxa in Cyperaceae tribe Cariceae. I. Generic relationships and evolutionary scenarios. Systematic Botany. 2004;29:528–544.
Stevens PF. onwards. Angiosperm phylogeny website. 2001 Version 9, June 2008 [and more or less continuously updated since]. http://www.mobot.org/MOBOT/research/APWeb/
Stoeva MP, Uzunova K, Popova ED, Stoyanova K. Patterns and levels of variation within section Phacocystis of genus Carex (Cyperaceae) in Bulgaria. Phytologia Balcanica. 2005;11:45–62.
Suda J, Kron P, Husband BC, Trávníček P. Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology. In: Doležel J, Greilhuber J, Suda J, editors. Flow cytometry with plant cells. Weinheim: Wiley-VCH; 2007. pp. 103–130.
Suda J, Kyncl T, Freiová R. Nuclear DNA amounts in Macaronesian angiosperms. Annals of Botany. 2003;92:153–164. PubMed PMC
Suda J, Leitch IJ. The quest for suitable reference standards in genome size research. Cytometry77A. 2010:717–720. PubMed
Sutherland GR, Baker E, Richards RI. Fragile sites still breaking. Trends in Genetics. 1998;14:501–506. PubMed
Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4·0. Molecular Biology and Evolution. 2007;24:1596–1599. PubMed
Tanaka N. Chromosome studies in Cyperaceae. VIII. Meiosis in diploid and tetraploid froms of Carex siderosticta Hance. Cytologia. 1940;11:282–310.
Tanaka N. The problem of aneuploidy (chromosome studies in Cyperaceae, with special reference to the problem of aneuploidy) Biological Contributions in Japan. 1948;4:1–327.
Tanaka N. Chromosome studies in the genus Carex with special reference to aneuploidy and polyploidy. Cytologia. 1949;15:15–29.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research. 1997;25:4876–4882. PubMed PMC
Vanzela ALL, Cuadrado A, Guerra M. Localization of 45S rDNA and telomeric sites on holocentric chromosomes of Rhynchospora tenuis Link (Cyperaceae) Genetics and Molecular Biology. 2003;26:199–201.
Veselý P, Bureš P, Šmarda P, Pavlíček T. Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Annals of Botany. 2012;109:65–75. PubMed PMC
Vyskot B, Hobza R. Gender in plants: sex chromosomes are emerging from the fog. Trends in Genetics. 2004;20:432–438. PubMed
Waterway MJ, Hoshino T, Masaki T. Phylogeny, species richness, and ecological specialization in Cyperaceae tribe Cariceae. Botanical Reviews. 2009;75:138–159.
Webb CO, Ackerly DD, Kembel SW. Phylocom: software for the analysis of phylogenetic community structure and character evolution. Bioinformatics. 2008;24:2098–2100. PubMed
Whitkus R. Experimental hybridizations among chromosome races of Carex pachystachya and the related species C. macloviana and C. preslii (Cyperaceae) Systematic Botany. 1988;13:146–153.
Záveská-Drábková L, Vlček Č. Molecular phylogeny of the genus Luzula DC. (Juncaceae, Monocotyledones) based on plastome and nuclear ribosomal regions: a case of incongruence, incomplete lineage sorting and hybridisation. Molecular Phylogenetics and Evolution. 2010;57:536–551. PubMed
Zedek F, Šmerda J, Šmarda P, Bureš P. Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis. BMC Plant Biology. 2010;10(265) http://dx.doi.org/10.1186/1471-2229-10-265 . PubMed PMC
Centromere drive may propel the evolution of chromosome and genome size in plants
Chromosome size matters: genome evolution in the cyperid clade
Speciation by triparental hybridization in genus Sorbus (Rosaceae)
Chromosome numbers of Carex (Cyperaceae) and their taxonomic implications
Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae)
Flow cytometry may allow microscope-independent detection of holocentric chromosomes in plants
Ecological and evolutionary significance of genomic GC content diversity in monocots