Sharka: the past, the present and the future
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
23202508
PubMed Central
PMC3509676
DOI
10.3390/v4112853
PII: v4112853
Knihovny.cz E-zdroje
- MeSH
- genom virový MeSH
- nemoci rostlin virologie MeSH
- virus šarky švestky fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Members the Potyviridae family belong to a group of plant viruses that are causing devastating plant diseases with a significant impact on agronomy and economics. Plum pox virus (PPV), as a causative agent of sharka disease, is widely discussed. The understanding of the molecular biology of potyviruses including PPV and the function of individual proteins as products of genome expression are quite necessary for the proposal the new antiviral strategies. This review brings to view the members of Potyviridae family with respect to plum pox virus. The genome of potyviruses is discussed with respect to protein products of its expression and their function. Plum pox virus distribution, genome organization, transmission and biochemical changes in infected plants are introduced. In addition, techniques used in PPV detection are accentuated and discussed, especially with respect to new modern techniques of nucleic acids isolation, based on the nanotechnological approach. Finally, perspectives on the future of possibilities for nanotechnology application in PPV determination/identification are outlined.
Zobrazit více v PubMed
Albrechtova L. Investigations on the distribution of sharka virus (plum pox virus) in tissue of prunus-domestica. J. Plant Dis. Prot. 1986;93:190–201.
Neumuller M., Hartmann W. The hypersensitivity of european plum (prunus domestica l.) against the plum pox virus; Proceedings of the twentieth international symposium on virus and virus–like diseases of temperate fruit crops – fruit tree diseases, 2008; pp. 273–279.
Badenes M.L., Asins M.J., Carbonell E.A., Glacer G. Genetic diversity in apricot, prunus armeniaca, aimed at improving resistance to plum pox virus. Plant Breed. 1996;115:133–139.
Balan V., Ivascu A., Toma S. Xvith international symposium on fruit tree virus diseases. 1995. Susceptibility of apricot, nectarine and peach cultivars and hybrids to plum-pox virus; pp. 299–305.
Martinez-Gomez P., Rubio M., Dicenta F., Gradziel T.M. Utilization of almond as source of plum pox virus resistance in peach breeding; Proceedings of the xixth international symposium on virus and virus-like diseases of temperate fruit crops: Fruit tree diseases, 2004; pp. 289–293.
Pribek D., Gaborjanyi R., Palkovics L. Molecular characterization of plum pox virus almond isolate; Proceedings of the xixth international symposium on virus and virus–like diseases of temperate fruit crops: Fruit tree diseases, 2004; pp. 289–293.
Rubio M., Martinez-Gomez P., Dicenta F. Resistance of almond cultivars to plum pox virus (sharka) Plant Breed. 2003;122:462–464. doi: 10.1046/j.1439-0523.2003.00872.x. DOI
Crescenzi A., Nuzzaci M., Levy L., Piazzolla P., Hadidi A. Xvith international symposium on fruit tree virus diseases. 1995. Plum pox virus (ppv) in sweet cherry; pp. 219–225.
Fanigliulo A., Comes S., Crescenzi A. Evaluation of cherry cultivars for their response to infection by plum pox virus sweet cherry strain; Proceedings of the xixth international symposium on virus and virus–like diseases of temperate fruit crops: Fruit tree diseases, 2004; pp. 309–316.
Boeglin M., Quiot J.B., Labonne G. Risk assessment of contamination of cherry trees by plum pox virus in france; Proceedings of the xixth international symposium on virus and virus–like diseases of temperate fruit crops: Fruit tree diseases, 2004; pp. 221–224.
Damsteegt V.D., Scorza R., Stone A.L., Schneider W.L., Webb K., Demuth M., Gildow F.E. Prunus host range of plum pox virus (ppv) in the united states by aphid and graft inoculation. Plant Dis. 2007;91:18–23. doi: 10.1094/PD-91-0018. PubMed DOI
Nemchinov L., Hadidi A. Characterization of the sour cherry strain of plum pox virus. Phytopathology. 1996;86:575–580. doi: 10.1094/Phyto-86-575. DOI
Elibuyuk I.O. Detection of plum pox virus in ornamental prunus cerasifera. Phytoparasitica. 2006;34:347–352. doi: 10.1007/BF02981020. DOI
Kamenova I. Prunus cerasifera as a host of plum pox virus in bulgaria. J. Plant Pathol. 2008;90:15–18.
Rubio M., Garcia-Ibarra A., Dicenta F., Martinez-Gomez P. Plum pox virus (sharka) sensitivity in prunus salicina and prunus cerasifera cultivars against a dideron-type isolate. Plant Breed. 2011;130:283–286.
Kalinina A., Brown D.C.W., Ravelonandro M. Susceptibility of ornamental prunus to plum pox potyvirus infection; Proceedings of the international symposium on biotechnology of temperate fruit crops and tropical species, 2007; pp. 601–605.
Kegler H., Fuchs E., Gruntzig M., Krczal G., Wegener B. Susceptibility of genotypes of the genus prunus to plum pox potyvirus. J. Plant Dis. Prot. 1996;103:255–261.
Sebestyen D., Nemeth M., Hangyal R., Krizbai L., Ember I., Nyerges K., Kolber M., Kiss E., Bese G. Ornamental prunus species as new natural hosts of plum pox virus and their importance in the spread of the virus in hungary. J. Plant Pathol. 2008;90:57–61.
Stobbs L.W., Van Driel L., Whybourne K., Carlson C., Tulloch M., Van Lier J. Distribution of plum pox virus in residential sites, commercial nurseries, and native plant species in the niagara region, ontario, canada. Plant Dis. 2005;89:822–827. doi: 10.1094/PD-89-0822. PubMed DOI
Ilbagi H., Citir A., Bostan H. Prunus spinosa l. - a natural wild host of some important fruit viruses in tekirdag,turkey; Proceedings of the twentieth international symposium on virus and virus–like diseases of temperate fruit crops – fruit tree diseases, 2008; pp. 33–36.
Polak J. Diagnosis and identification of plant pathogens. 1997. The role of prunus spinosa l in epidemiology of plum pox virus in the czech republic; pp. 527–530.
Polak J., Oukropec I. The determination of sources of resistance to plum pox virus suitable for peach; Proceedings of the twentieth international symposium on virus and virus–like diseases of temperate fruit crops – fruit tree diseases, 2008; pp. 269–272.
Cambra M., Capote N., Olmos A., Bertolini E., Gorris M.T., Africander N.L., Levy L., Lenardon S.L., Clover G., Wright D. Proposal for a new international protocol for detection and identification of plum pox virus: Validation of the techniques; Proceedings of the twentieth international symposium on virus and virus–like diseases of temperate fruit crops – fruit tree diseases, 2008; pp. 181–191.
Damsteegt V.D., Scorza R., Gildow F.E., Schneider W.L., Stone A.L., Luster D.G. Comparative host range of us isolates of plum pox virus among prunus and other woody plant species following graft inoculation or aphid transmission. Phytopathology. 2004;94:S24–S24.
Monsion M., Briard P., Glasa M., Ravelonandro M. Comparative techniques to perform koch's postulates with plum pox virus; Proceedings of the twentieth international symposium on virus and virus–like diseases of temperate fruit crops – fruit tree diseases, 2008; pp. 221–225.
Ravelonandro M., Briard P., Monsion M. Strategy to identify and to characterize new isolates of plum pox virus; Proceedings of the xixth international symposium on virus and virus–like diseases of temperate fruit crops: Fruit tree diseases, 2004; pp. 171–175.
Salvador B., Delgadillo M.O., Saenz P., Garcia J.A., Simon-Mateo C. Identification of plum pox virus pathogenicity determinants in herbaceous and woody hosts. Mol. Plant-Microbe Interact. 2008;21:20–29. doi: 10.1094/MPMI-21-1-0020. PubMed DOI
Baumgartnerova H. First findings of plum pox virus in walnut trees (juglans regia l) Acta Virol. 1996;40:59–60. PubMed
Polak J. Hosts and symptoms of plum pox virus: Woody species other than fruit and ornamental species of prunus. EPPO Bull. 2006;36:225–226. doi: 10.1111/j.1365-2338.2006.00977.x. DOI
Gibbs A., Ohshima K. Potyviruses and the digital revolution. Annu. Rev. Phytopathol. . 2010;48:205–223. PubMed
Gibbs A.J., Mackenzie A.M., Wei K.J., Gibbs M.J. The potyviruses of australia. Arch. Virol. 2008;153:1411–1420. doi: 10.1007/s00705-008-0134-6. PubMed DOI
Revers F., Le Gall O., Candresse T., Maule A.J. New advances in understanding the molecular biology of plant/potyvirus interactions. Mol. Plant-Microbe Interact. 12:367–376.
Riechmann J.L., Lain S., Garcia J.A. Highlights and prospects of potyvirus molecular-biology. Journal of General Virology. 1992;73:1–16. doi: 10.1099/0022-1317-73-1-1. PubMed DOI
Ward C.W., Shukla D.D. Taxonomy of potyviruses - current problems and some solutions. Intervirology. 1991;32:269–296. PubMed
Fereres A., Kampmeier G.E., Irwin M.E. Aphid attraction and preference for soybean and pepper plants infected with potyviridae. Ann. Entomol. Soc. Am. 1999;92:542–548.
Manachini B., Casati P., Cinanni L., Bianco P. Role of myzus persicae (hemiptera : Aphididae) and its secondary hosts in plum pox virus propagation. J. Econ. Entomol. 2007;100:1047–1052. doi: 10.1603/0022-0493(2007)100[1047:ROMPHA]2.0.CO;2. PubMed DOI
Srinivasan R., Alvarez J.M. Effect of mixed viral infections (potato virus y-potato leafroll virus) on biology and preference of vectors myzus persicae and macrosiphum euphorbiae (hemiptera : Aphididae) J. Econ. Entomol. 2007;100:646–655. doi: 10.1603/0022-0493(2007)100[646:EOMVIP]2.0.CO;2. PubMed DOI
Symmes E.J., Perring T.M. Intraspecific variation in zucchini yellow mosaic virus transmission by myzus persicae and the impact of aphid host plant. J. Econ. Entomol. 2007;100:1764–1772. doi: 10.1603/0022-0493(2007)100[1764:IVIZYM]2.0.CO;2. PubMed DOI
Choi I.R., French R., Hein G.L., Stenger D.C. Fully biologically active in vitro transcripts of the eriophyid mite-transmitted wheat streak mosaic tritimovirus. Phytopathology. 1999;89:1182–1185. doi: 10.1094/PHYTO.1999.89.12.1182. PubMed DOI
Stephan D., Moeller I., Skoracka A., Ehrig F., Maiss E. Eriophyid mite transmission and host range of a brome streak mosaic virus isolate derived from a full-length cdna clone. Arch. Virol. 2008;153:181–185. doi: 10.1007/s00705-007-1065-3. PubMed DOI
Sanchez-Sanchez H., Henry M., Cardenas-Soriano E., Alvizo-Villasana H.F. Identification of wheat streak mosaic virus and its vector aceria tosichella in mexico. Plant Dis. 2001;85:13–17. doi: 10.1094/PDIS.2001.85.1.13. PubMed DOI
Adkins S., Webb S.E., Achor D., Roberts P.D., Baker C.A. Identification and characterization of a novel whitefly-transmitted member of the family potyviridae isolated from cucurbits in florida. Phytopathology. 2007;97:145–154. doi: 10.1094/PHYTO-97-2-0145. PubMed DOI
Adkins S., Webster C.G., Kousik C.S., Webb S.E., Roberts P.D., Stansly P.A., Turechek W.W. Ecology and management of whitefly-transmitted viruses of vegetable crops in florida. Virus Res. 2011;159:110–114. doi: 10.1016/j.virusres.2011.04.016. PubMed DOI
Valverde R.A., Sim J., Lotrakul P. Whitefly transmission of sweet potato viruses. Virus Res. 2004;100:123–128. doi: 10.1016/j.virusres.2003.12.020. PubMed DOI
Dessens J.T., Meyer M. Identification of structural similarities between putative transmission proteins of polymyxa and spongospora transmitted bymoviruses and furoviruses. Virus Genes. 1996;12:95–99. doi: 10.1007/BF00370006. PubMed DOI
Chen J.P. Progress and prospects of studies on polymyxa graminis and its transmitted cereal viruses in china. Progress Nat. Sci. 2005;15:481–490. doi: 10.1080/10020070512331342440. DOI
McGrann G.R.D., Adams M.J. Investigating resistance to barley mild mosaic virus. Plant Pathol. 2004;53:161–169. doi: 10.1111/j.0032-0862.2004.00998.x. DOI
Thompson J.P., Clewett T.G., Jennings R.E., Sheedy J.G., Owen K.J., Persley D.M. Detection of polymyxa graminis in a barley crop in australia. Austral. Plant Pathol. 2011;40:66–75. doi: 10.1007/s13313-010-0015-9. DOI
Campbell R.N. Fungal transmission of plant viruses. Annu. Rev. Phytopathol. 1996;34:87–108. doi: 10.1146/annurev.phyto.34.1.87. PubMed DOI
Kuroda T., Nabata K., Hori T., Ishikawa K., Natsuaki T. Soybean leaf rugose mosaic virus, a new soilborne virus in the family potyviridae, isolated from soybean in japan. Journal of General Plant Pathology. 2010;76:382–388. doi: 10.1007/s10327-010-0272-z. DOI
Chung B.Y.W., Miller W.A., Atkins J.F., Firth A.E. An overlapping essential gene in the potyviridae. Proc. Natl. Acad. Sci. U. S. A. 2008;105:5897–5902. PubMed PMC
Wen R.H., Hajimorad M.R. Mutational analysis of the putative pipo of soybean mosaic virus suggests disruption of pipo protein impedes movement. Virology. 2010;400:1–7. doi: 10.1016/j.virol.2010.01.022. PubMed DOI
Wen R.H., Maroof M.A.S., Hajimorad M.R. Amino acid changes in p3, and not the overlapping pipo-encoded protein, determine virulence of soybean mosaic virus on functionally immune rsv1-genotype soybean. Molecular Plant Pathology. 2011;12:799–807. doi: 10.1111/j.1364-3703.2011.00714.x. PubMed DOI PMC
Kneller E.L.P., Rakotondrafara A.M., Miller W.A. Cap-independent translation of plant viral rnas. Virus Research. 2006;119:63–75. doi: 10.1016/j.virusres.2005.10.010. PubMed DOI PMC
Vijayapalani P., Maeshima M., Nagasaki-Takekuchi N., Miller W.A. Interaction of the trans-frame potyvirus protein p3n-pipo with host protein pcap1 facilitates potyvirus movement. PLoS Pathog. 2012;8:1–15. PubMed PMC
Adams M.J., Antoniw J.F., Beaudoin F. Overview and analysis of the polyprotein cleavage sites in the family potyviridae. Mol. Plant Pathol. 2005;6:471–487. doi: 10.1111/j.1364-3703.2005.00296.x. PubMed DOI
Verchot J., Koonin E.V., Carrington J.C. The 35-kda protein from the n-terminus of the potyviral polyprotein functions as a 3rd virus-encoded proteinase. Virology. 1991;185:527–535. doi: 10.1016/0042-6822(91)90522-D. PubMed DOI
Yoshida N., Shimura H., Yamashita K., Suzuki M., Masuta C. Variability in the p1 gene helps to refine phylogenetic relationships among leek yellow stripe virus isolates from garlic. Arch. Virol. 2012;157:147–153. doi: 10.1007/s00705-011-1132-7. PubMed DOI
Salvador B., Saenz P., Yanguez E., Quiot J.B., Quiot L., Delgadillo M.O., Garcia J.A., Simon-Mateo C. Host-specific effect of p1 exchange between two potyviruses. Mol. Plant Pathol. 2008;9:147–155. doi: 10.1111/j.1364-3703.2007.00450.x. PubMed DOI PMC
Shi Y., Chen J., Hong X., Adams M.J. A potyvirus p1 protein interacts with the rieske fe/s protein of its host. Mol. Plant Pathol. 2007;8:785–790. doi: 10.1111/j.1364-3703.2007.00426.x. PubMed DOI
Valli A., Lopez-Moya J.J., Garcia J.A. Recombination and gene duplication in the evolutionary diversification of p1 proteins in the family potyviridae. J. Gen. Virol. 2007;88:1016–1028. doi: 10.1099/vir.0.82402-0. PubMed DOI
Young B.A., Stenger D.C., Qu F., Morris T.J., Tatineni S., French R. Tritimovirus p1 functions as a suppressor of rna silencing and an enhancer of disease symptoms. Virus Res. 2012;163:672–677. doi: 10.1016/j.virusres.2011.12.019. PubMed DOI
Rohozkova J., Navratil M. P1 peptidase - a mysterious protein of family potyviridae. J. Biosci. 2011;36:189–200. doi: 10.1007/s12038-011-9020-6. PubMed DOI
Stenger D.C., Hein G.L., Gildow F.E., Horken K.M., French R. Plant virus hc-pro is a determinant of eriophyid mite transmission. J. Virol. 2005;79:9054–9061. doi: 10.1128/JVI.79.14.9054-9061.2005. PubMed DOI PMC
Endres M., Mlotshwa S., Schauer S., Bowman L., Vance V. Hc-pro suppression of rna silencing: Towards a mechanism. Phytopathology. 2005;95:S123–S123.
Torres-Barcelo C., Daros J.A., Elena S.F. Compensatory molecular evolution of hc-pro, an rna-silencing suppressor from a plant rna virus. Mol. Biol. Evol. 2010;27:543–551. doi: 10.1093/molbev/msp272. PubMed DOI
Shen W.T., Yan P., Gao L., Pan X.Y., Wu J.Y., Zhou P. Helper component-proteinase (hc-pro) protein of papaya ringspot virus interacts with papaya calreticulin. Mol. Plant Pathol. 2010;11:335–346. doi: 10.1111/j.1364-3703.2009.00606.x. PubMed DOI PMC
Guo B.H., Lin J.Z., Ye K.Q. Structure of the autocatalytic cysteine protease domain of potyvirus helper-component proteinase. J. Biol. Chem. 2011;286:21937–21943. doi: 10.1074/jbc.M111.230706. PubMed DOI PMC
Matthews D.A., Smith W.W., Ferre R.A., Condon B., Budahazi G., Sisson W., Villafranca J.E., Janson C.A., McElroy H.E., Gribskov C.L., et al. Structure of human rhinovirus 3c protease reveals a trypsin-like polypeptide fold, rna-binding site, and means for cleaving precursor polyprotein. Cell. 1994;77:761–771. doi: 10.1016/0092-8674(94)90059-0. PubMed DOI
Riechmann J.L., Cervera M.T., Garcia J.A. Processing of the plum pox virus polyprotein at the p3-6k(1) junction is not required for virus viability. J. Gen. Virol. 1995;76:951–956. doi: 10.1099/0022-1317-76-4-951. PubMed DOI
Anindya R., Savithri H.S. Potyviral nia proteinase, a proteinase with novel deoxyribonuclease activity. J. Biol. Chem. 2004;279:32159–32169. doi: 10.1074/jbc.M404135200. PubMed DOI
Han H.E., Sellamuthu S., Shin B.H., Lee Y.J., Song S., Seo J.S., Baek I.S., Bae J., Kim H., Yoo Y.J., et al. The nuclear inclusion a (nia) protease of turnip mosaic virus (tumv) cleaves amyloid-beta. Plos One. 2010;5 PubMed PMC
Han J.S., Kang H.J., Song B.D., Choi K.Y. Novel mechanism of activity control of potyvirus nia protease. Faseb J. 2002;16:A905–A905.
Puhl A.C., Giacomini C., Irazoqui G., Batista-Viera F., Villarino A., Terenzi H. Covalent immobilization of tobacco-etch-virus nia protease: A useful tool for cleavage: Of the histidine tag of recombinant proteins. Biotechnol. Appl. Biochem. 2009;53:165–174. doi: 10.1042/BA20080063. PubMed DOI
Chen K.C., Chiang C.H., Raja J.A.J., Liu F.L., Tai C.H., Yeh S.D. A single amino acid of niapro of papaya ringspot virus determines host specificity for infection of papaya. Mol. Plant-Microbe Interact. 2008;21:1046–1057. doi: 10.1094/MPMI-21-8-1046. PubMed DOI
Mathur C., Jimsheena V.K., Banerjee S., Makinen K., Gowda L.R., Savithri H.S. Functional regulation of pvbv nuclear inclusion protein-a protease activity upon interaction with viral protein genome-linked and phosphorylation. Virology. 2012;422:254–264. doi: 10.1016/j.virol.2011.10.009. PubMed DOI
Restrepo M.A., Freed D.D., Carrington J.C. Nuclear transport of plant potyviral proteins. Plant Cell. 1990;2:987–998. PubMed PMC
Knuhtsen H., Hiebert E., Purciful D. Partial-purification and some properties of tobacco etch virus-induced intranuclear inclusions. Virology. 1974;61:200–209. doi: 10.1016/0042-6822(74)90254-2. PubMed DOI
Shepard J.F. Electron microscopy of subtilisin-treated tobacco etch virus nuclear and cytoplasmic inclusions. Virology. 1968;36:20. doi: 10.1016/0042-6822(68)90112-8. PubMed DOI
Sheffield F.M.L. The cytoplasmic and nuclear inclusions associated with severe etch virus. J. Royal Microscop. Soc. 1941;61:30–45. doi: 10.1111/j.1365-2818.1941.tb00883.x. DOI
Fellers J.P., Collins G.B., Hunt A.G. The nia-proteinase of different plant potyviruses provides specific resistance to viral infection. Crop Sci. 1998;38:1309–1319. doi: 10.2135/cropsci1998.0011183X003800050030x. DOI
Fukuzawa N., Itchoda N., Ishihara T., Goto K., Masuta C., Matsumura T. Hc-pro, a potyvirus rna silencing suppressor, cancels cycling of cucumber mosaic virus in nicotiana benthamiana plants. Virus Genes. 2010;40:440–446. doi: 10.1007/s11262-010-0460-0. PubMed DOI
Giner A., Lopez-Moya J.J., Lakatos L. Rna interference and viruses: Current innovations and future trends. CAISTER ACADEMIC PRESS; WYMONDHAM: 2010. Rna silencing in plants and the role of viral suppressors; pp. 25–46.
Reyes C.A., De Francesco A., Pena E.J., Costa N., Plata M.I., Sendin L., Castagnaro A.P., Garcia M.L. Resistance to citrus psorosis virus in transgenic sweet orange plants is triggered by coat protein-rna silencing. J. Biotechnol. 2011;151:151–158. PubMed
Jenner C.E., Wang X.W., Tomimura K., Ohshima K., Ponz F., Walsh J.A. The dual role of the potyvirus p3 protein of turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol. Plant-Microbe Interact. 2003;16:777–784. doi: 10.1094/MPMI.2003.16.9.777. PubMed DOI
Lin L., Luo Z.P., Yan F., Lu Y.W., Zheng H.Y., Chen J.P. Interaction between potyvirus p3 and ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) of host plants. Virus Genes. 2011;43:90–92. doi: 10.1007/s11262-011-0596-6. PubMed DOI
Chowda-Reddy R.V., Sun H.Y., Chen H.Y., Poysa V., Ling H., Gijzen M., Wang A.M. Mutations in the p3 protein of soybean mosaic virus g2 isolates determine virulence on rsv4-genotype soybean. Mol. Plant-Microbe Interact. 2011;24:37–43. doi: 10.1094/MPMI-07-10-0158. PubMed DOI
Ryslava H., Doubnerova V., Janoskova M., Subr Z., Novakova S., Cerovska N. Influence of viral infection on transgenic plants containing genes for nonstructural potyviral proteins hc-pro and p3. Febs J. 2005;272:464–464. doi: 10.1111/j.1742-4658.2004.04486.x. PubMed DOI
Saenz P., Cervera M.T., Dallot S., Quiot L., Quiot J.B., Riechmann J.L., Garcia J.A. Identification of a pathogenicity determinant of plum pox virus in the sequence encoding the c-terminal region of protein p3+6k(1) J. Gen. Virol. 2000;81:557–566. PubMed
Suehiro N., Natsuaki T., Watanabe T., Okuda S. An important determinant of the ability of turnip mosaic virus to infect brassica spp. And/or raphanus sativus is in its p3 protein. J. Gen. Virol. 2004;85:2087–2098. doi: 10.1099/vir.0.79825-0. PubMed DOI
Wen R.H., Maroof M.A.S., Hajimorad M.R. Amino acid changes in p3, and not the overlapping pipo-encoded protein, determine virulence of soybean mosaic virus on functionally immune rsv1-genotype soybean. Mol. Plant Pathol. 2011;12:799–807. doi: 10.1111/j.1364-3703.2011.00714.x. PubMed DOI PMC
Cui X.Y., Wei T.Y., Chowda-Reddy R.V., Sun G.Y., Wang A.M. The tobacco etch virus p3 protein forms mobile inclusions via the early secretory pathway and traffics along actin microfilaments. Virology. 2010;397:56–63. doi: 10.1016/j.virol.2009.11.015. PubMed DOI
Eiamtanasate S., Juricek M., Yap Y.K. C-terminal hydrophobic region leads prsv p3 protein to endoplasmic reticulum. Virus Genes. 2007;35:611–617. doi: 10.1007/s11262-007-0114-z. PubMed DOI
Hong X.Y., Chen J., Shi Y.H., Chen J.P. The '6k1' protein of a strain of soybean mosaic virus localizes to the cell periphery. Arch. Virol. 2007;152:1547–1551. doi: 10.1007/s00705-007-0972-7. PubMed DOI
Carrington J.C., Jensen P.E., Schaad M.C. Genetic evidence for an essential role for potyvirus ci protein in cell-to-cell movement. Plant J. 1998;14:393–400. doi: 10.1046/j.1365-313X.1998.00120.x. PubMed DOI
RodriguezCerezo E., Findlay K., Shaw J.G., Lomonossoff G.P., Qiu S.G., Linstead P., Shanks M., Risco C. The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells. Virology. 1997;236:296–306. doi: 10.1006/viro.1997.8736. PubMed DOI
Roberts I.M., Wang D., Findlay K., Maule A.J. Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (cis) show that the ci protein acts transiently in aiding virus movement. Virology. 1998;245:173–181. doi: 10.1006/viro.1998.9132. PubMed DOI
Jimenez I., Lopez L., Alamillo J.M., Valli A., Garcia J.A. Identification of a plum pox virus ci-interacting protein from chloroplast that has a negative effect in virus infection. Mol. Plant-Microbe Interact. 2006;19:350–358. doi: 10.1094/MPMI-19-0350. PubMed DOI
Abdul-Razzak A., Guiraud T., Peypelut M., Walter J., Houvenaghel M.C., Candresse T., Le Gall O., German-Retana S. Involvement of the cylindrical inclusion (ci) protein in the overcoming of an eif4e-mediated resistance against lettuce mosaic potyvirus. Mol. Plant Pathol. 2009;10:109–113. doi: 10.1111/j.1364-3703.2008.00513.x. PubMed DOI PMC
Tavert-Roudet G., Abdul-Razzak A., Doublet B., Walter J., Delaunay T., German-Retana S., Michon T., Le Gall O., Candresse T. The c terminus of lettuce mosaic potyvirus cylindrical inclusion helicase interacts with the viral vpg and with lettuce translation eukaryotic initiation factor 4e. J. Gen. Virol. 2012;93:184–193. doi: 10.1099/vir.0.035881-0. PubMed DOI
Ayme V., Souche S., Caranta C., Jacquemond M., Chadoeuf J., Palloix A., Moury B. Different mutations in the genome-linked protein vpg of potato virus y confer virulence on the pvr2(3) resistance in pepper. Mol. Plant-Microbe Interact. 2006;19:557–563. doi: 10.1094/MPMI-19-0557. PubMed DOI
Charron C., Nicolai M., Gallois J.L., Robaglia C., Moury B.T., Palloix A., Caranta C. Natural variation and functional analyses provide evidence for co-evolution between plant eif4e and potyviral vpg. Plant J. 2008;54:56–68. doi: 10.1111/j.1365-313X.2008.03407.x. PubMed DOI
Rajamaki M.L., Valkonen J.P.T. The 6k2 protein and the vpg of potato virus a are determinants of systemic infection in nicandra physaloides. Mol. Plant-Microbe Interact. 1999;12:1074–1081. doi: 10.1094/MPMI.1999.12.12.1074. PubMed DOI
Valkonen J.P.T., Rajamaki M.L., Hamalainen J., Kekarainen T., Oruetxebarria I. Incompatible potyvirus-host interactions in resistant plants: The viral genome-linked protein (vpg) of potato virus a as an avirulence determinant; Proceedings of the 7th aschersleben symposium new aspects of resistance research on culitivated plants: Virus diseases; QUEDLINBURG: BUNDESANSTALT FUR ZUCHTUNGS FORSCHUNG KULTURPFLANZEN; 2000. pp. 92–95.
Puurand U., Makinen K., Paulin L., Saarma M. The nucleotide-sequence of potato-virus-a genomic rna and its sequence similarities with other potyviruses. J. Gen. Virol. 1994;75:457–461. doi: 10.1099/0022-1317-75-2-457. PubMed DOI
Rantalainen K.I., Eskelin K., Tompa P., Makinen K. Structural flexibility allows the functional diversity of potyvirus genome-linked protein vpg. J. Virol. 2011;85:2449–2457. doi: 10.1128/JVI.02051-10. PubMed DOI PMC
Rajamaki M.L., Valkonen J.P.T. Localization of a potyvirus and the viral genome-linked protein in wild potato leaves at an early stage of systemic infection. Mol. Plant-Microbe Interact. 2003;16:25–34. doi: 10.1094/MPMI.2003.16.1.25. PubMed DOI
Vuorinen A.L., Kelloniemi J., Valkonen J.P.T. Why do viruses need phloem for systemic invasion of plants? Plant Sci. 2011;181:355–363. doi: 10.1016/j.plantsci.2011.06.008. PubMed DOI
Rajamaki M.L., Valkonen J.P.T. Viral genome-linked protein (vpg) controls accumulation and phloem-loading of a potyvirus in inoculated potato leaves. Mol. Plant-Microbe Interact. 2002;15:138–149. doi: 10.1094/MPMI.2002.15.2.138. PubMed DOI
Puustinen P., Rajamaki M.L., Ivanov K.I., Valkonen J.P.T., Makinen K. Detection of the potyviral genome-linked protein vpg in virions and its phosphorylation by host kinases. J. Virol. 2002;76:12703–12711. PubMed PMC
Roudet-Tavert G., Michon T., Walter J., Delaunay T., Redondo E., Le Gall O. Central domain of a potyvirus vpg is involved in the interaction with the host translation initiation factor eif4e and the viral protein hcpro. J. Gen. Virol. 2007;88:1029–1033. doi: 10.1099/vir.0.82501-0. PubMed DOI
Yambao M.L.M., Masuta C., Nakahara K., Uyeda I. The central and c-terminal domains of vpg of clover yellow vein virus are important for vpg-hcpro and vpg-vpg interactions. J. Gen. Virol. 2003;84:2861–2869. doi: 10.1099/vir.0.19312-0. PubMed DOI
Dunoyer P., Thomas C., Harrison S., Revers F., Maule A. A cysteine-rich plant protein potentiates potyvirus movement through an interaction with the virus genome-linked protein vpg. J. Virol. 2004;78:2301–2309. doi: 10.1128/JVI.78.5.2301-2309.2004. PubMed DOI PMC
Hong Y.L., Levay K., Murphy J.F., Klein P.G., Shaw J.G., Hunt A.G. A potyvirus polymerase interacts with the viral coat protein and vpg in yeast-cells. Virology. 1995;214:159–166. doi: 10.1006/viro.1995.9944. PubMed DOI
Carrington J.C., Haldeman R., Dolja V.V., Restrepohartwig M.A. Internal cleavage and trans-proteolytic activities of the vpg-proteinase (nia) of tobacco etch potyvirus in-vivo. J. Virol. 1993;67:6995–7000. PubMed PMC
Hajimorad M.R., Ding X.S., Flasinski S., Mahajan S., Graff E., HaldemanCahill R., Carrington J.C., Cassidy B.G. Nla and nlb of peanut stripe potyvirus are present in the nucleus of infected cells, but do not form inclusions. Virology. 1996;224:368–379. doi: 10.1006/viro.1996.0544. PubMed DOI
Beauchemin C., Boutet N., Laliberte J.F. Visualization of the interaction between the precursors of vpg, the viral protein linked to the genome of turnip mosaic virus, and the translation eukaryotic initiation factor iso 4e in planta. J. Virol. 2007;81:775–782. doi: 10.1128/JVI.01277-06. PubMed DOI PMC
Borgstrom B., Johansen I.E. Mutations in pea seedborne mosaic virus genome-linked protein vpg alter pathotype-specific virulence in pisum sativum. Mol. Plant-Microbe Interact. 2001;14:707–714. doi: 10.1094/MPMI.2001.14.6.707. PubMed DOI
Daughenbaugh K.F., Fraser C.S., Hershey J.W.B., Hardy M.E. The genome-linked protein vpg of the norwalk virus binds eif3, suggesting its role in translation initiation complex recruitment. Embo J. 2003;22:2852–2859. doi: 10.1093/emboj/cdg251. PubMed DOI PMC
Leonard S., Plante D., Wittmann S., Daigneault N., Fortin M.G., Laliberte J.F. Complex formation between potyvirus vpg and translation eukaryotic initiation factor 4e correlates with virus infectivity. J. Virol. 2000;74:7730–7737. doi: 10.1128/JVI.74.17.7730-7737.2000. PubMed DOI PMC
Leonard S., Viel C., Beauchemin C., Daigneault N., Fortin M.G., Laliberte J.F. Interaction of vpg-pro of turnip mosaic virus with the translation initiation factor 4e and the poly(a)-binding protein in planta. J. Gen. Virol. 2004;85:1055–1063. doi: 10.1099/vir.0.19706-0. PubMed DOI
Plante D., Viel C., Leonard S., Tampo H., Laliberte J.F., Fortin M.G. Tumip mosaic virus vpg does not disrupt the translation initiation complex but interferes with cap binding. Physiol. Mol. Plant Pathol. 2004;64:219–226. doi: 10.1016/j.pmpp.2004.06.003. DOI
Grzela R., Strokovska L., Andrieu J.P., Dublet B., Zagorski W., Chroboczek J. Potyvirus terminal protein vpg, effector of host eukaryotic initiation factor eif4e. Biochimie. 2006;88:887–896. doi: 10.1016/j.biochi.2006.02.012. PubMed DOI
Michon T., Estevez Y., Walter J., German-Retana S., Le Gall O. The potyviral virus genome-linked protein vpg forms a ternary complex with the eukaryotic initiation factors eif4e and eif4g and reduces eif4e affinity for a mrna cap analogue. Febs J. 2006;273:1312–1322. doi: 10.1111/j.1742-4658.2006.05156.x. PubMed DOI
Eskelin K., Hafren A., Rantalainen K.I., Makinen K. Potyviral vpg enhances viral rna translation and inhibits reporter mrna translation in planta. J. Virol. 2011;85:9210–9221. doi: 10.1128/JVI.00052-11. PubMed DOI PMC
Rantalainen K.I., Christensen P.A., Hafren A., Otzen D.E., Kalkkinen N., Makinen K. Interaction of a potyviral vpg with anionic phospholipid vesicles. Virology. 2009;395:114–120. PubMed
Li X.H., Valdez P., Olvera R.E., Carrington J.C. Functions of the tobacco etch virus rna polymerase (nib): Subcellular transport and protein-protein interaction with vpg/proteinase (nia) J. Virol. 1997;71:1598–1607. PubMed PMC
Daros J.A., Schaad M.C., Carrington J.C. Functional analysis of the interaction between vpg-proteinase (nia) and rna polymerase (nib) of tobacco etch potyvirus, using conditional and suppressor mutants. J. Virol. 1999;73:8732–8740. PubMed PMC
Guo D.Y., Rajamaki M.L., Saarma M., Valkonen J.P.T. Towards a protein interaction map of potyviruses: Protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. J. Gen. Virol. 2001;82:935–939. PubMed
Lin L., Shi Y.H., Luo Z.P., Lu Y.W., Zheng H.Y., Yan F., Chen J., Chen J.P., Adams M.J., Wu Y.F. Protein-protein interactions in two potyviruses using the yeast two-hybrid system. Virus Res. 2009;142:36–40. doi: 10.1016/j.virusres.2009.01.006. PubMed DOI
Puustinen P., Makinen K. Uridylylation of the potyvirus vpg by viral replicase nib correlates with the nucleotide binding capacity of vpg. J. Biol. Chem. 2004;279:38103–38110. doi: 10.1074/jbc.M402910200. PubMed DOI
Jones A.L., Johansen I.E., Bean S.J., Bach I., Maule A.J. Specificity of resistance to pea seed-borne mosaic potyvirus in transgenic peas expressing the viral replicase (nib) gene. J. Gen. Virol. 1998;79:3129–3137. PubMed
Sivamani E., Brey C.W., Dyer W.E., Talbert L.E., Qu R.D. Resistance to wheat streak mosaic virus in transgenic wheat expressing the viral replicase (nib) gene. Mol. Breed. 2000;6:469–477. doi: 10.1023/A:1026576124482. DOI
Cassidy B.G., Nelson R.S. Differences in protection phenotypes in tobacco plants expressing coat protein genes from peanut stripe potyvirus with or without an engineered atg. Mol. Plant-Microbe Interact. 1995;8:357–365. doi: 10.1094/MPMI-8-0357. DOI
Crescenzi A., d'Aquino L., Nuzzaci M., Ostuni A., Bavoso A., Comes S., De Stradis A., Piazzolla P. Production of strain specific antibodies against a synthetic polypeptide corresponding to the n-terminal region of the plum pox potyvirus coat protein. J. Virol. Methods. 1997;69:181–189. doi: 10.1016/S0166-0934(97)00158-4. PubMed DOI
Gotz R., Huth W., Maiss E. Molecular analyses of the coat protein region of different viruses on poaceae belonging to the potyviridae. Agronomie. 1995;15:491–494. doi: 10.1051/agro:19950719. DOI
Handley J.A., Smith G.R., Dale J.L., Harding R.M. Sequence diversity in the coat protein coding region of twelve sugarcane mosaic potyvirus isolates from australia, USA and south africa. Arch. Virol. 1998;143:1145–1153. doi: 10.1007/s007050050362. PubMed DOI
Kobayashi K., Rabinowicz P., BravoAlmonacid F., Helguera M., Conci V., Lot H., Mentaberry A. Coat protein gene sequences of garlic and onion isolates of the onion yellow dwarf potyvirus (oydv) Arch. Virol. 1996;141:2277–2287. doi: 10.1007/BF01718630. PubMed DOI
Ryu K.H., Kim S.J., Park W.M. Nucleotide sequence analysis of the coat protein genes of two korean isolates of sweet potato feathery mottle potyvirus. Arch. Virol. 1998;143:557–562. doi: 10.1007/s007050050311. PubMed DOI
Valkonen J.P.T., Puurand U., Slack S.A., Makinen K., Saarma M. 3 strain groups of potato-a-potyvirus based on hypersensitive responses in potato, serological properties, and coat protein sequences. Plant Dis. 1995;79:748–753. doi: 10.1094/PD-79-0748. DOI
Massey B., Cui X., Hiebert E., Elliott M.S., Waipara N., Hayes L., Charudattan R. Partial sequencing of the genomic rna of araujia mosaic virus and comparison of the coat protein sequence with those of other potyviruses. Arch. Virol. 2007;152:2125–2129. doi: 10.1007/s00705-007-1044-8. PubMed DOI
Pfosser M.F., Baumann H. Phylogeny and geographical differentiation of zucchini yellow mosaic virus isolates (potyviridae) based on molecular analysis of the coat protein and part of the cytoplasmic inclusion protein genes. Arch. Virol. 2002;147:1599–1609. doi: 10.1007/s00705-002-0839-x. PubMed DOI
Sanchez F., Wang X., Jenner C.E., Walsh J.A., Ponz F. Strains of turnip mosaic potyvirus as defined by the molecular analysis of the coat protein gene of the virus. Virus Res. 2003;94:33–43. doi: 10.1016/S0168-1702(03)00122-9. PubMed DOI
Andrejeva J., Puurand U., Merits A., Rabenstein F., Jarvekulg L., Valkonen J.P.T. Potyvirus helper component-proteinase and coat protein (cp) have coordinated functions in virus-host interactions and the same cp motif affects virus transmission and accumulation. J. Gen. Virol. 1999;80:1133–1139. PubMed
Atreya P.L., Lopezmoya J.J., Chu M.H., Atreya C.D., Pirone T.P. Mutational analysis of the coat protein n-terminal amino-acids involved in potyvirus transmission by aphids. J. Gen. Virol. 1995;76:265–270. PubMed
Blanc S., LopezMoya J.J., Wang R.Y., GarciaLampasona S., Thornbury D.W., Pirone T.P. A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology. 1997;231:141–147. doi: 10.1006/viro.1997.8521. PubMed DOI
Flasinski S., Cassidy B.G. Potyvirus aphid transmission requires helper component and homologous coat protein for maximal efficiency. Arch. Virol. 1998;143:2159–2172. doi: 10.1007/s007050050449. PubMed DOI
Lopez-Moya J.J., Pirone T.P. Charge changes near the n terminus of the coat protein of two potyviruses affect virus movement. J. Gen. Virol. 1998;79:161–165. PubMed
Lopez-Moya J.J., Wang R.Y., Pirone T.P. Context of the coat protein dag motif affects potyvirus transmissibility by aphids. J. Gen. Virol. 1999;80:3281–3288. PubMed
Dombrovsky A., Huet H., Chejanovsky N., Raccah B. Aphid transmission of a potyvirus depends on suitability of the helper component and the n terminus of the coat protein. Arch. Virol. 2005;150:287–298. doi: 10.1007/s00705-004-0407-7. PubMed DOI
Andersen K., Johansen I.E. A single conserved amino acid in the coat protein gene of pea seed-borne mosaic potyvirus modulates the ability of the virus to move systemically in chenopodium quinoa. Virology. 1998;241:304–311. doi: 10.1006/viro.1997.8967. PubMed DOI
Aparicio F., Thomas C.L., Lederer C., Niu Y., Wang D.W., Maule A.J. Virus induction of heat shock protein 70 reflects a general response to protein accumulation in the plant cytosol. Plant Physiol. 2005;138:529–536. doi: 10.1104/pp.104.058958. PubMed DOI PMC
Sugio A., Dreos R., Aparicio F., Maule A.J. The cytosolic protein response as a subcomponent of the wider heat shock response in arabidopsis. Plant Cell. 2009;21:642–654. doi: 10.1105/tpc.108.062596. PubMed DOI PMC
Hafren A., Hofius D., Ronnholm G., Sonnewald U., Makinen K. Hsp70 and its cochaperone cpip promote potyvirus infection in nicotiana benthamiana by regulating viral coat protein functions. Plant Cell. 2010;22:523–535. doi: 10.1105/tpc.109.072413. PubMed DOI PMC
Wang Y.Y., Gardner R.C., Pearson M.N. Resistance to vanilla necrosis potyvirus in transgenic nicotiana benthamiana plants containing the virus coat protein gene. J. Phytopathol. 1997;145:7–15. doi: 10.1111/j.1439-0434.1997.tb00335.x. DOI
Dinant S., Maisonneuve B., Albouy J., Chupeau Y., Chupeau M.C., Bellec Y., Gaudefroy F., Kusiak C., Souche S., Robaglia C., et al. Coat protein gene-mediated protection in lactuca sativa against lettuce mosaic potyvirus strains. Mol. Breed. 1997;3:75–86. doi: 10.1023/A:1009671925550. DOI
Xu D., Liu H., Li F., Howell B., Tian T., Li R. Biological characterization and complete genomic sequence of carrot thin leaf virus. Phytopathology. 2011;101:S195–S195.
Fuchs M., Gal-On A., Raccah B., Gonsalves D. Epidemiology of an aphid nontransmissible potyvirus in fields of nontransgenic and coat protein transgenic squash. Transgenic Res. 1999;8:429–439. doi: 10.1023/A:1008935426211. DOI
Higgins C.M., Hall R.M., Mitter N., Cruickshank A., Dietzgen R.G. Peanut stripe potyvirus resistance in peanut (arachis hypogaea l.) plants carrying viral coat protein gene sequences. Transgenic Res. 2004;13:59–67. doi: 10.1023/B:TRAG.0000017166.29458.74. PubMed DOI
Ravelonandro M., Dunez J., Scorza R., Labonne G. 17th international symposium on virus and virus-like diseases of temperate fruit crops: Fruit tree diseases, vols 1 and 2. INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; LEUVEN: 1998. Challenging transgenic plums expressing potyvirus coat protein genes with viruliferous aphids; pp. 413–420.
Scorza R., Callahan A.M., Levy L., Damsteegt V., Ravelonandro M. 17th international symposium on virus and virus-like diseases of temperate fruit crops: Fruit tree diseases, vols 1 and 2. INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; LEUVEN 1: 1998. Transferring potyvirus coat protein genes through hybridization of transgenic plants to produce plum pox virus resistant plums (prunus domestica l.) pp. 421–427.
Yadav N., Khan J.A. Over expression of narcissus potyvirus coat protein in e. Coli. Indian J. Virol. 2009;20:44–44.
Savenkov E.I., Valkonen J.P.T. Coat protein gene-mediated resistance to potato virus a in transgenic plants is suppressed following infection with another potyvirus. J. Gen. Virol. 2001;82:2275–2278. PubMed
Shand K., Theodoropoulos C., Stenzel D., Dale J.L., Harrison M.D. Expression of potato virus y cytoplasmic inclusion protein in tobacco results in disorganization of parenchyma cells, distortion of epidermal cells, and induces mitochondrial and chloroplast abnormalities, formation of membrane whorls and atypical lipid accumulation. Micron. 2009;40:730–736. doi: 10.1016/j.micron.2009.04.011. PubMed DOI
Restrepohartwig M.A., Carrington J.C. Regulation of nuclear transport of a plant potyvirus protein by autoproteolysis. J. Virol. 1992;66:5662–5666. PubMed PMC
Restrepohartwig M.A., Carrington J.C. The tobacco etch potyvirus 6-kilodalton protein is membrane-associated and involved in viral replication. J. Virol. 1994;68:2388–2397. PubMed PMC
Spetz C., Valkonen J.P.T. Potyviral 6k2 protein long-distance movement and symptom-induction functions are independent and host-specific. Mol. Plant-Microbe Interact. 2004;17:502–510. doi: 10.1094/MPMI.2004.17.5.502. PubMed DOI
Yoshida N., Shimura H., Yamashita K., Suzuki M., Masuta C. Variability in the p1 gene helps to refine phylogenetic relationships among leek yellow stripe virus isolates from garlic. Arch. Virol. 2011;157:147–153. PubMed
Martin M.T., Gelie B. Non-structural plum pox potyvirus proteins detected by immunogold labelling. Eur. J. Plant Pathol. 1997;103:427–431. doi: 10.1023/A:1008653000005. DOI
Arbatova J., Lehto K., Pehu E., Pehu T. Localization of the p1 protein of potato y potyvirus in association with cytoplasmic inclusion bodies and in the cytoplasm of infected cells. J. Gen. Virol. 1998;79:2319–2323. PubMed
Mangrauthia S.K., Jain R.K., Praveen S. Sequence motifs comparisons establish a functional portrait of a multifunctional protein hc-pro from papaya ringspot potyvirus. J. Plant Biochem. Biotechnol. 2008;17:201–204. PubMed PMC
Plisson C., Drucker M., Blanc S., German-Retana S., Le Gall O., Thomas D., Bron P. Structural characterization of hc-pro, a plant virus multifunctional protein. J. Biol. Chem. 2003;278:23753–23761. PubMed
Soitamo A.J., Jada B., Lehto K. Hc-pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers. BMC Plant Biol. 2011:11. PubMed PMC
Wu H.W., Lin S.S., Chen K.C., Yeh S.D., Chua N.H. Discriminating mutations of hc-pro of zucchini yellow mosaic virus with differential effects on small rna pathways involved in viral pathogenicity and symptom development. Mol. Plant-Microbe Interact. 2010;23:17–28. doi: 10.1094/MPMI-23-1-0017. PubMed DOI
Zheng H.Y., Yan F., Lu Y.W., Sun L.Y., Lin L., Cai L., Hou M.S., Chen J.P. Mapping the self-interacting domains of tumv hc-pro and the subcellular localization of the protein. Virus Genes. 2011;42:110–116. doi: 10.1007/s11262-010-0538-8. PubMed DOI
Hjulsager C.K., Olsen B.S., Jensen D.M.K., Cordea M.I., Krath B.N., Johansen I.E., Lund O.S. Multiple determinants in the coding region of pea seed-borne mosaic virus p3 are involved in virulence against sbm-2 resistance. Virology. 2006;355:52–61. doi: 10.1016/j.virol.2006.07.016. PubMed DOI
Langenberg W.G., Zhang L.Y. Immunocytology shows the presence of tobacco etch virus p3 protein in nuclear inclusions. J. Struct. Biol. 1997;118:243–247. doi: 10.1006/jsbi.1997.3856. PubMed DOI
Hjulsager C.K., Lund O.S., Johansen I.E. A new pathotype of pea seedborne mosaic virus explained by properties of the p3-6k1-and viral genome-linked protein (vpg)-coding regions. Mol. Plant-Microbe Interact. 2002;15:169–171. doi: 10.1094/MPMI.2002.15.2.169. PubMed DOI
Waltermann A., Maiss E. Detection of 6k1 as a mature protein of 6 kda in plum pox virus-infected nicotiana benthamiana. J. Gen. Virol. 2006;87:2381–2386. doi: 10.1099/vir.0.81873-0. PubMed DOI
Wei T.Y., Zhang C.W., Hong J.A., Xiong R.Y., Kasschau K.D., Zhou X.P., Carrington J.C., Wang A.M. Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein p3n-pipo. PLoS Pathog. 2010:6. PubMed PMC
Riedel D., Lesemann D.E., Maiss E. Ultrastructural localization of nonstructural and coat proteins of 19 potyviruses using antisera to bacterially expressed proteins of plum pox potyvirus. Arch. Virol. 1998;143:2133–2158. doi: 10.1007/s007050050448. PubMed DOI
Voloudakis A.E., Malpica C.A., Aleman-Verdaguer M.E., Stark D.M., Fauquet C.M., Beachy R.N. Structural characterization of tobacco etch virus coat protein mutants. Arch. Virol. 2004;149:699–712. doi: 10.1007/s00705-003-0247-x. PubMed DOI
Hema M., Reddy C.V.S., Savithri H.S., Sreenivasulu P. Assembly of recombinant coat protein of sugarcane streak mosaic virus into potyvirus-like particles. Indian J. Exp. Biol. 2008;46:793–796. PubMed
Atanasoff D. Yearbook university of sofia. Vol. 11. University of Sofia; 1932. Plum pox. A new virus disease; pp. 49–69.
Atanasoff D. Mosaic of stone fruits. Phytopathology. 1935:8.
Candresse T., Svanella-Dumas L., Gentit P., Caglayan K., Cevik B. First report of the presence of plum pox virus rec strain in turkey. Plant Dis. 2007;91:331–331. PubMed
Myrta A., Rwahnih M.A., Savino V. Presence of a recombinant isolate of plum pox virus in apulia. J. Plant Pathol. 2005;87:127–130.
Snover-Clift K.L., Clement P.A., Jablonski R., Mungari R.J., Mavrodieva V.A., Negi S., Levy L. First report of plum pox virus on plum in new york state. Plant Dis. 2007;91:1512–1512. PubMed
Zagrai I., Gaboreanu I., Ferencz B., Zagrai L., Pamfil D., Popescu O., Ravelonandro M., Capote N., Kovacs K. Bulletin of the university of agricultural sciences and veterinary medicine, vol 62, 2006: Animal husbandry and biotechnologies. 2006. First detection and molecular caracterization of plum pox virus recombinant strain in romania; pp. 291–298.
Thompson D., Varga A., De Costa H., Birch C., Glasa M., James D. First report of plum pox virus recombinant strain on prunus spp. In canada. Plant Dis. 2009;93:674–674. PubMed
Kamenova I., Dallot S., Bozkova V., Milusheva S. First report of the plum pox virus recombinant strain on peach in bulgaria. Plant Dis. 2011;95:1320–1321. PubMed
Cambra M., Capote N. Plum pox virus (ppv) in kazakhstan. EPPO Bull. 2006;36:210–211. doi: 10.1111/j.1365-2338.2006.01064.x. DOI
Navratil M., Safarova D., Karesova R., Petrzik K. First incidence of plum pox virus on apricot trees in china. Plant Dis. 2005;89:338–338. PubMed
Dal Zotto A., Ortego J.M., Raigon J.M., Caloggero S., Rossini M., Ducasse D.A. First report in argentina of plum pox virus causing sharka disease in prunus. Plant Dis. 2006;90:523–523. PubMed
Capote N., Cambra M. Plum pox virus (ppv) in pakistan. EPPO Bull. 2006;36:212–212. doi: 10.1111/j.1365-2338.2006.01065.x. DOI
Maejima K., Hoshi H., Hashimoto M., Himeno M., Kawanishi T., Komatsu K., Yamaji Y., Hamamoto H., Namba S. First report of plum pox virus infecting japanese apricot (prunus mume sieb. Et zucc.) in japan. J. Gen. Plant Pathol. 2010;76:229–231. doi: 10.1007/s10327-010-0233-6. DOI
Kolber M., Nemeth M., Chernets A., Kalashian Y., Dulic-Markovic I., Glasa M., Isac M., Kriska B., Malinowski T., Zawadzka B., et al. Current situation of plum pox disease on stone fruit species in middle and eastern europe; Proceedings of the 18th international symposium on virus & virus–like diseases of temperate fruit crops – top fruit diseases, vols 1 and 2; LEUVEN 1: INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; 2001. pp. 73–78.
Mikec I., Kajić V., Križanac I. Plum pox virus (ppv) in croatia. EPPO Bull. 2006;36:207–207.
Mikec I., Kajic V., Krajacic M., Skoric D. Occurrence and distribution of plum pox virus in croatia; Proceedings of the twentieth international symposium on virus and virus–like diseases of temperate fruit crops – fruit tree diseases, 2008; pp. 193–196.
Isac M., Zagrai I. Plum pox virus (ppv) in romania. EPPO Bull. 2006;36:213–213. doi: 10.1111/j.1365-2338.2006.00963.x. DOI
Varveri C. Plum pox virus (ppv) in greece. EPPO Bull. 2006;36:209–210. doi: 10.1111/j.1365-2338.2006.00957.x. DOI
Navrátil M. Plum pox virus (ppv) in the czech republic. EPPO Bull. 2006;36:208–208. doi: 10.1111/j.1365-2338.2006.00991.x. DOI
Jarausch W. Plum pox virus (ppv) in germany. EPPO Bull. 2006;36:209–209. doi: 10.1111/j.1365-2338.2006.00993.x. DOI
Milusheva S., Kamenova I., Stoev A. Plum pox virus (ppv) in bulgaria. EPPO Bull. 2006;36:206–206.
Kölber M. Plum pox virus (ppv) in hungary. EPPO Bull. 2006;36:210–210. doi: 10.1111/j.1365-2338.2006.00958.x. DOI
Prichodko Y. Plum pox virus (ppv) in russia. EPPO Bull. 2006;36:213–213. doi: 10.1111/j.1365-2338.2006.00964.x. DOI
Malinowski T. Plum pox virus (ppv) in poland. EPPO Bull. 2006;36:212–213. doi: 10.1111/j.1365-2338.2006.00962.x. DOI
EPPO. Plum pox potyvirus. EPPO Bull. 2004;34:247–256. doi: 10.1111/j.1365-2338.2004.00726.x. DOI
Dulic-Markovic I., Jevremovic D. Plum pox virus (ppv) in serbia. EPPO Bull. 2006;36:213–214. doi: 10.1111/j.1365-2338.2006.00965.x. DOI
Glasa M. Plum pox virus (ppv) in slovakia. EPPO Bull. 2006;36:214–214. doi: 10.1111/j.1365-2338.2006.00966.x. DOI
Ortego J., Dal Zotto A., Caloggero S., Raigón J.M., Gasparini M.L., Ojeda M.E., Ducasse D.A. Current status of ppv worldwide - plum pox virus (ppv) in argentina. EPPO Bull. 2006;36:205–205.
Stamo B., Myrta A. Current status of ppv worldwide - plum pox virus (ppv) in albania. EPPO Bull. 2006;36:205–205. doi: 10.1111/j.1365-2338.2006.00947.x. DOI
Akbas B., Degirmenci K., Ciftci O., Kaya A., Yurtmen M., Uzunogullari N., Celik N., Torkolmez S. Update on plum pox virus distribution in turkey. Phytopathologia Mediterranea. 2011;50:75–83.
Di Terlizzi B., Boscia D. Plum pox virus (ppv) in italy. EPPO Bull. 2006;36:210–210. doi: 10.1111/j.1365-2338.2006.00959.x. DOI
Ortego J., Zotto A.D., Caloggero S., Raigón J.M., Gasparini M.L., Ojeda M.E., Ducasse D.A. Plum pox virus (ppv) in argentina. EPPO Bull. 2006;36:205–205.
Kalashian Y., Chernets A. Plum pox virus (ppv) in moldova. EPPO Bull. 2006;36:211–211. doi: 10.1111/j.1365-2338.2006.00972.x. DOI
Youssef S.A., Shalaby A. Plum pox virus (ppv) in egypt. EPPO Bull. 2006;36:208–208. doi: 10.1111/j.1365-2338.2006.00955.x. DOI
Norkus T., Staniulis J., Zizyte M., Melnyk M., Yusko L., Snihur H., Budzanivska I., Polischuk V. Molecular identification of plum pox virus isolates from lithuania and ukraine. Zemdirbyste-Agriculture. 2008;95:277–285.
Wang A., Sanfacon H., Stobbs L.W., James D., Thompson D., Svircev A.M., Brown D.C.W. Plum pox virus in canada: Progress in research and future prospects for disease control. Can. J. Plant Pathol.-Rev. Can. Phytopathol. 2006;28:182–196.
Blystad D.R., Munthe T. Plum pox virus (ppv) in norway. EPPO Bull. 2006;36:212–212. doi: 10.1111/j.1365-2338.2006.00961.x. DOI
Zamharir M.G., Bashir N.S., Khakvar R. Plum pox virus (ppv) in iran. EPPO Bull. 2006;36:210–210.
Speich P. Plum pox virus (ppv) in france. EPPO Bull. 2006;36:208–209. doi: 10.1111/j.1365-2338.2006.00992.x. DOI
Marn M.V., Mavric I. Plum pox virus (ppv) in slovenia. EPPO Bull. 2006;36:214–214.
Kondratenko P., Udovychenko V. Plum pox virus (ppv) in ukraine. EPPO Bull. 2006;36:217–217. doi: 10.1111/j.1365-2338.2006.00974.x. DOI
Mumford R.A. Plum pox virus (ppv) in the united kingdom. EPPO Bull. 2006;36:217–217. doi: 10.1111/j.1365-2338.2006.00969.x. DOI
Ismaeil F. Plum pox virus (ppv) in syria. EPPO Bull. 2006;36:216–216. doi: 10.1111/j.1365-2338.2006.00997.x. DOI
Levy L. Plum pox virus (ppv) in the united states of america. EPPO Bull. 2006;36:217–218. doi: 10.1111/j.1365-2338.2006.00998.x. DOI
Caglayan K. Plum pox virus (ppv) in turkey. EPPO Bull. 2006;36:216–217. doi: 10.1111/j.1365-2338.2006.00971.x. DOI
Cambra M.A., Serra J., Cano A., Cambra M. Plum pox virus (ppv) in spain. EPPO Bull. 2006;36:215–215.
Muñoz M., Collao M. Plum pox virus (ppv) in chile. EPPO Bull. 2006;36:207–207.
Matić S., Durić G., Myrta A. Current status of ppv worldwide - plum pox virus (ppv) in bosnia and herzegovina. EPPO Bull. 2006;36:205–206.
Staniulis J. Plum pox virus (ppv) in lithuania. EPPO Bull. 2006;36:211–211. doi: 10.1111/j.1365-2338.2006.00995.x. DOI
Verhoeven J.T.J., Roenhorst J.W., Jongedijk G.P. Plum pox virus (ppv) in the netherlands. EPPO Bull. 2006;36:211–212.
Boulila M., Ravelonandro M. Plum pox virus (ppv) in tunisia. EPPO Bull. 2006;36:216–216.
Ramel M.E., Gugerli P., Bünter M. Plum pox virus (ppv) in switzerland. EPPO Bull. 2006;36:215–216.
Lemmetty A. Plum pox virus (ppv) in finland. EPPO Bull. 2006;36:208–208. doi: 10.1111/j.1365-2338.2006.00956.x. DOI
Choueiri E. Plum pox virus (ppv) in lebanon. EPPO Bull. 2006;36:211–211. doi: 10.1111/j.1365-2338.2006.00960.x. DOI
Navratil M., Safarova D., Karesova R., Petrzik K. Plum pox virus (ppv) in china. EPPO Bull. 2006;36:207–207.
Reyes F., Fiore N., Reyes M.A., Sepulveda P., Paredes V., Prieto H. Biological behavior and partial molecular characterization of six chilean isolates of plum pox virus. Plant Dis. 2003;87:15–20. doi: 10.1094/PDIS.2003.87.1.15. PubMed DOI
Manachini B., Casati P., Aliverti I., Cinanni L. Transmission of ppv-m to prunus persica by brachycaudus schwartzi and phorodon humuli (hem. aphididae) J. Appl. Entomol. 2004;128:677–680. doi: 10.1111/j.1439-0418.2004.00908.x. DOI
Zawadzka B., Rozpara E., Grzyb Z. Vi international symposium on plum and prune genetics, breeding and pomology. INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; LEUVEN 1: 1998. The response of some new plum cultivars to plum pox virus (ppv) pp. 81–85.
Paprstein F., Karesova R., Navratil M. Evaluation of ppv symptoms on plum fruits; Proceedings of the eighth international symposium on plum and prune genetics, breeding and pomology, 2007; pp. 255–257.
Varveri C., Zintzaras E., Dimou D., Di Terlizzi B. Monitoring and spatiotemporal analysis of ppv-m spread in two apricot orchards in southern greece; Proceedings of the 18th international symposium on virus & virus–like diseases of temperate fruit crops – top fruit diseases, vols 1 and 2; LEUVEN 1: INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; 2001. pp. 129–133.
Clemente-Moreno M.J., Piqueras A., Hernandez J.A. Implication of peroxidase activity in development of healthy and ppv-infected micropropagated gf305 peach plants. Plant Growth Regul. 2011;65:359–367. doi: 10.1007/s10725-011-9608-8. DOI
Pacheco R., Garcia-Marcos A., Manzano A., de Lacoba M.G., Camanes G., Garcia-Agustin P., Diaz-Ruiz J.R., Tenllado F. Comparative analysis of transcriptomic and hormonal responses to compatible and incompatible plant-virus interactions that lead to cell death. Mol. Plant-Microbe Interact. 2012;25:709–723. doi: 10.1094/MPMI-11-11-0305. PubMed DOI
Nagyova A., Kamencayova M., Glasa M., Subr Z.W. The 3'-proximal part of the plum pox virus p1 gene determinates the symptom expression in two herbaceous host plants. Virus Genes. 2012;44:505–512. PubMed
Varveri C., Vassilakos N. Preliminary biological and molecular characterization of mild ppv isolates naturally induced in n-benthamiana plants; Proceedings of the twentieth international symposium on virus and virus–like diseases of temperate fruit crops – fruit tree diseases; LEUVEN 1: INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; 2008. pp. 249–253.
Sutic D., Jordovic M., Rankovic M., Festi H. Comparative studies of some sharka virus isolates. Proceedings of the VIII Symposium sur les Maladies a Virus des Arbres Frutiers. Annales de Phytopathologie, 1971; 1971. pp. 185–194.
James D., Varga A., Thompson D., Hayes S. Detection of a new and unusual isolate of plum pox virus in plum (prunus domestica) Plant Dis. 2003;87:1119–1124. doi: 10.1094/PDIS.2003.87.9.1119. PubMed DOI
Serce C.U., Candresse T., Svanella-Dumas L., Krizbai L., Gazel M., Caglayan K. Further characterization of a new recombinant group of plum pox virus isolates, ppv-t, found in orchards in the ankara province of turkey. Virus Res. 2009;142:121–126. doi: 10.1016/j.virusres.2009.01.022. PubMed DOI
Matic S., Elmaghraby I., Law V., Varga A., Reed C., Myrta A., James D. Serological and molecular characterization of isolates of plum pox virus strain el amar to better understand its diversity, evolution, and unique geographical distribution. Journal of Plant Pathology. 2011;93:303–310.
Candresse T., Macquaire G., Lanneau M., Bousalem M., Wetze T., Quiot-Douine L., Quiot J.B., Dunez J. Detection of plum pox potyvirus and analysis of its molecular variability using immunocapture-pcr1. EPPO Bull. 1994;24:585–594. doi: 10.1111/j.1365-2338.1994.tb01072.x. DOI
Glasa M., Malinowski T., Predajna L., Pupola N., Dekena D., Michalczuk L., Candresse T. Sequence variability, recombination analysis, and specific detection of the w strain of plum pox virus. Phytopathology. 2011;101:980–985. doi: 10.1094/PHYTO-12-10-0334. PubMed DOI
Glasa M., Matisova J., Kudela O. Characterization of plum pox virus isolates from slovakia. Acta Virol. 1998;42:226–229. PubMed
Navratil M., Simonova V., Fialova R., Valova P. Molecular variability of czech plum pox virus isolates. Acta Virol. 1998;42:254–256. PubMed
Navratil M., Simonova V., Paprstein F., Karesova R. Detection and serological identification of plum pox virus isolates in the czech republic; 17th international symposium on virus and virus-like diseases of temperate fruit crops: Fruit tree diseases, vols 1 and 2; 1998. pp. 373–378.
Al Rwahnih M., Boscia D., Myrta A., Di Terlizzi B. First record of plum pox virus in jordan; Proceedings of the 18th international symposium on virus & virus–like diseases of temperate fruit crops – top fruit diseases, vols 1 and 2, 2001; pp. 141–144.
Kamenova I., Milusheva S., Borisova A., Stoev A., Myrta A. Typing of plum pox virus isolates in bulgaria: Preliminary results. Biotechnol. Biotechnol. Equip. 2002;16:10–13.
Bianco P.A., Aliverti I., Casati P., Belli G., Comes S., Fanigliulo A., Crescenzi A. Detection and characterization of plum pox virus isolates in lombardia and veneto regions (italy); Proceedings of the xixth international symposium on virus and virus–like diseases of temperate fruit crops: Fruit tree diseases, 2004; pp. 165–169.
Cambra M., Gorris M.T., Capote N., Asensio M., Martinez M.C., Bertolini E., Collado C., de Mendoza A.H., Mataix E., Lopez A. Epidemiology of plum pox virus in japanese plums in spain; Proceedings of the xixth international symposium on virus and virus–like diseases of temperate fruit crops: Fruit tree diseases, 2004; pp. 195–200.
Jarausch W., Bassler A., Molla N., Krezal G. First detection and molecular characterisation of ppv-m strains in plum orchards in south-western germany; Proceedings of the xixth international symposium on virus and virus–like diseases of temperate fruit crops: Fruit tree diseases, 2004; pp. 159–164.
Marn M.V., Mavric I. Current status of sharka disease in slovenia; Proceedings of the xixth international symposium on virus and virus–like diseases of temperate fruit crops: Fruit tree diseases, 2004; pp. 245–249.
Dallot S., Boeglin M., Labonne G. Spatial pattern and genetic structure of ppv-m in a delimited area of stone fruit orchards in southern france; Proceedings of the twentieth international symposium on virus and virus–like diseases of temperate fruit crops – fruit tree diseases, 2008; pp. 235–242.
Dallot S., Kamenova I., Glasa M., Pittnerova S., Kominek P., Paunovic S., Jevremovic D., Virscek-Marn M., Plesko I.M., Milusheva S. Prevalence and genetic structure of ppv-m in six european countries; Proceedings of the twentieth international symposium on virus and virus–like diseases of temperate fruit crops – fruit tree diseases, 2008; pp. 227–234.
Kajic V., Cerni S., Krajacic M., Mikec I., Skoric D. Molecular typing of plum pox virus isolates in croatia. J. Plant Pathol. 2008;90:9–13.
Zagrai L., Zagrai I., Ferencz B., Gaboreanu I., Kovacs K., Petricele I., Popescu O., Pamfil D., Capote N. Serological and molecular typing of plum pox virus isolates in the north of romania. J. Plant Pathol. 2008;90:41–46.
Zagrai I., Zagrai L., Ferencz B., Petricele I., Pamfil D., Popescu O., Briciu A., Festila A. Serological and molecular typing of plum pox virus isolates in the transylvania, romania. Not. Bot. Horti Agrobot. Cluj-Na. 2009;37:265–272.
Capote N., Cambra M.A., Botella P., Gorris M.T., Martinez M.C., Lopez-Quilez A., Cambra M. Detection, characterization, epidemiology and eradication of plum pox virus marcus type in spain. J. Plant Pathol. 2010;92:619–628.
Zagrai I., Zagrai L., Preda S., Kelemen B., Petricele I., Popescu O., Pamfil D., Isac M. Genetic diversity of plum pox virus isolates in muntenia, romania. Rom. Biotech. Lett. 2010;15:5303–5309.
Dallot S., Glasa M., Jevremovic D., Kamenova I., Paunovic S., Labonne G. Mediterranean and central-eastern european countries host viruses of two different clades of plum pox virus strain m. Arch. Virol. 2011;156:539–542. doi: 10.1007/s00705-011-0918-y. PubMed DOI
Myrta A., Palmisano F., Pulaj B., Susuri L.R., Boscia D. Incidence of plum pox virus and its strains in kosovo. J. Plant Pathol. 2011;93:725–728.
Rosales M., Hinrichsen P., Herrera G. 17th international symposium on virus and virus-like diseases of temperate fruit crops: Fruit tree diseases, vols 1 and 2. INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; LEUVEN 1: 1998. Molecular characterization of plum pox virus isolated from apricots, plums and peaches in chile; pp. 401–405.
Rochon D., Theilmann J., James D., Reade R., Yang L., Upton C. Partial molecular characterization of plum pox virus isolates occurring in canada. Can. J. Plant Pathol.-Rev. Can. Phytopathol. 2003;25:198–208.
Marie-Jeanne V., Thebaud G., Peyre J., Labonne G. Spatially arranged diversity of plum pox virus (ppv) isolates in a cluster of orchards in southern france; Proceedings of the xixth international symposium on virus and virus-like diseases of temperate fruit crops: Fruit tree diseases,INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE: LEUVEN 1, 2004; LEUVEN 1: INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; pp. 213–215.
Elibuyuk I.O. Current situation of sharka disease in ankara, turkey. Phytoparasitica. 2004;32:417–420. doi: 10.1007/BF02979855. DOI
Theilmann J., Yang L., Rochon D. Sequence analysis of isolates of the canadian plum pox virus, and comparisons to isolates from europe and the united states. Can. J. Plant Pathol.-Rev. Can. Phytopathol. 2006;28:144–151.
Matic S., Al-Rwahnih M., Myrta A. Diversity of plum pox virus isolates in bosnia and herzegovina. Plant Pathol. 2006;55:11–17. doi: 10.1111/j.1365-3059.2005.01309.x. DOI
Gadiou S., Safarova D., Navratil M. Genetic variability of plum pox virus isolates in the czech republic. Eur. J. Plant Pathol. 2008;121:513–517. doi: 10.1007/s10658-008-9272-7. DOI
Zagrai I., Zagrai L., Preda S., Kelemen B., Petricele I., Popescu O., Pamfil D., Isac M. Genetic diversity of plum pox virus isolates in muntenia, romania. Rom. Biotech. Lett. 2011;15:5303–5309.
Glasa M., Paunovic S., Jevremovic D., Myrta A., Pittnerova S., Candresse T. Analysis of recombinant plum pox virus (ppv) isolates from serbia confirms genetic homogeneity and supports a regional origin for the ppv-rec subgroup. Arch. Virol. 2005;150:2051–2060. doi: 10.1007/s00705-005-0548-3. PubMed DOI
Navratil M., Safarova D., Gadiou S., Franova J., Kucerova J., Talacko L. The partial molecular characterization of plum pox virus infecting sweet cherry trees in the czech republic; Proceedings of the twentieth international symposium on virus and virus–like diseases of temperate fruit crops – fruit tree diseases; LEUVEN 1: INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; 2008. pp. 203–208.
Wetzel T., Candresse T., Ravelonandro M., Delbos R.P., Mazyad H., Aboulata A.E., Dunez J. Nucleotide-sequence of the 3'-terminal region of the rna of the elamar strain of plum pox potyvirus. J. Gen. Virol. 1991;72:1741–1746. doi: 10.1099/0022-1317-72-7-1741. PubMed DOI
Abdel-Ghaffar M.H., El-Nasr M.A.A., Hari V. Studies on an apricot strain of plum pox potyvirus isolated from el amar, egypt; 17th international symposium on virus and virus-like diseases of temperate fruit crops: Fruit tree diseases, vols 1 and 2; 1998. pp. 385–391.
Aboul-Ela A., Aboul-Ata A.E., Mazyad H.M. International symposium on apricot culture, vols 1 and 2. INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; LEUVEN 1: 1999. Plum pox potyvirus situation in egyptian stone fruit trees; pp. 745–751.
Myrta A., Varga A., James D. The complete genome sequence of an el amar isolate of plum pox virus (ppv) and its phylogenetic relationship to other ppv strains. Arch. Virol. 2006;151:1189–1198. doi: 10.1007/s00705-005-0703-x. PubMed DOI
Matic S., Elmaghraby I., Law V., Varga A., Reed C., Myrta A., James D. Serological and molecular characterization of isolates of plum pox virus strain el amar to better understand its diversity, evolution, and unique geographical distribution. J. Plant Pathol. 2011;93:303–310.
Nemchinov L., Hadidi A., Kolber M., Nemeth M. Molecular evidence for the occurrence of plum pox virus - cherry subgroup in hungary; 17th international symposium on virus and virus-like diseases of temperate fruit crops: Fruit tree diseases, vols 1 and 2; LEUVEN 1: INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; 1998. pp. 503–508.
Nemchinov L., Hadidi A., Maiss E., Cambra M., Candresse T., Damsteegt V. Sour cherry strain of plum pox potyvirus (ppv): Molecular and serological evidence for a new subgroup of ppv strains. Phytopathology. 1996;86:1215–1221. doi: 10.1094/Phyto-86-1215. DOI
Crescenzi A., dAquino L., Comes S., Nuzzaci M., Piazzolla P., Boscia D., Hadidi A. Characterization of the sweet cherry isolate of plum pox potyvirus. Plant Dis. 1997;81:711–714. doi: 10.1094/PDIS.1997.81.7.711. PubMed DOI
Isac M., Plopa C., Calinescu M., Myrta A. Detection of the viral diseases presently with the stone fruit species in romania; Proceedings of the twentieth international symposium on virus and virus–like diseases of temperate fruit crops – fruit tree diseases, 2008; pp. 59–63.
Schneider W.L., Damsteegt V.D., Gildow F.E., Stone A.L., Sherman D.J., Levy L.E., Mavrodieva V., Richwine N., Welliver R., Luster D.G. Molecular, ultrastructural, and biological characterization of pennsylvania isolates of plum pox virus. Phytopathology. 2011;101:627–636. doi: 10.1094/PHYTO-09-10-0256. PubMed DOI
Damsteegt V.D., Stone A.L., Schneider W.L., Luster D.G., Gildow F.E. Potential prunus host range of ppv-penn isolates by aphid transmission; Proceedings of the xixth international symposium on virus and virus–like diseases of temperate fruit crops: Fruit tree diseases; LEUVEN 1: INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; 2004. pp. 201–205.
James D., Varga A. Nucleotide sequence analysis of plum pox virus isolate w3174: Evidence of a new strain. Virus Res. 2005;110:143–150. doi: 10.1016/j.virusres.2005.02.004. PubMed DOI
Riechmann J.L., Lain S., Garcia J.A. Highlights and prospects of potyvirus molecular-biology. J. Gen. Virol. 1992;73:1–16. doi: 10.1099/0022-1317-73-1-1. PubMed DOI
Salvador B., García J.A., Simón-Mateo C. Causal agent of sharka disease: Plum pox virus genome and function of gene products. EPPO Bull. 2006;36:229–238. doi: 10.1111/j.1365-2338.2006.00979.x. DOI
Teycheney P.Y., Tavert G., Delbos R., Ravelonandro M., Dunez J. The complete nucleotide-sequence of plum pox virus-rna (strain-d) Nucleic Acids Res. 1989;17:10115–10116. doi: 10.1093/nar/17.23.10115. PubMed DOI PMC
Riechmann J.L., Lain S., Garcia J.A. Identification of the initiation codon of plum pox potyvirus genomic rna. Virology. 1991;185:544–552. doi: 10.1016/0042-6822(91)90524-F. PubMed DOI
Khan M.A., Goss D.J. Poly(a)-binding protein increases the binding affinity and kinetic rates of interaction of viral protein linked to genome with translation initiation factors eifiso4f and eifiso4f. 4b complex. Biochemistry. 2012;51:1388–1395. PubMed
Alvarez V., Ducasse D.A., Biderbost E., Nome S.F. Sequencing and characterization of the coat protein and 3' non-coding region of a new sweet potato potyvirus. Arch. Virol. 1997;142:1635–1644. doi: 10.1007/s007050050185. PubMed DOI
Colinet D., Kummert J., Lepoivre P. Evidence for the assignment of two strains of splv to the genus potyvirus based on coat protein and 3' non-coding region sequence data. Virus Res. 1997;49:91–100. doi: 10.1016/S0168-1702(97)01456-1. PubMed DOI
Carrington J.C., Freed D.D. Cap-independent enhancement of translation by a plant potyvirus 5' nontranslated region. J. Virol. 1990;64:1590–1597. PubMed PMC
Kneller E.L.P., Rakotondrafara A.M., Miller W.A. Cap-independent translation of plant viral rnas. Virus Res. 2006;119:63–75. doi: 10.1016/j.virusres.2005.10.010. PubMed DOI PMC
SimonBuela L., Guo H.S., Garcia J.A. Cap-independent leaky scanning as the mechanism of translation initiation of a plant viral genomic rna. J. Gen. Virol. 1997;78:2691–2699. PubMed
Fanigliulo A., Comes S., Maiss E., Piazzolla P., Crescenzi A. The complete nucleotide sequence of plum pox virus isolates from sweet (ppv-swc) and sour (ppv-soc) cherry and their taxonomic relationships within the species. Arch. Virol. 2003;148:2137–2153. doi: 10.1007/s00705-003-0175-9. PubMed DOI
Glasa M., Marie-Jeanne V., Moury B., Kudela O., Quiot J.B. Molecular variability of the p3-6k(1) genomic region among geographically and biologically distinct isolates of plum pox virus. Arch. Virol. 2002;147:563–575. doi: 10.1007/s007050200006. PubMed DOI
Poncarova Z., Kominek P. Restriction fragment length polymorphism differentiation of plum pox virus isolates. Acta Virol. 1998;42:268–269. PubMed
SimonBuela L., Guo H.S., Garcia J.A. Long sequences in the 5' noncoding region of plum pox virus are not necessary for viral infectivity but contribute to viral competitiveness and pathogenesis. Virology. 1997;233:157–162. doi: 10.1006/viro.1997.8574. PubMed DOI
Simon-Buela L., Osaba L., Garcia J.A., Lopez-Moya J.J. Preservation of 5 '-end integrity of a potyvirus genomic rna is not dependent on template specificity. Virology. 2000;269:377–382. doi: 10.1006/viro.2000.0229. PubMed DOI
Fernandez-Calvino L., Lopez-Abella D., Lopez-Moya J.J., Fereres A. Comparison of potato virus y and plum pox virus transmission by two aphid species in relation to their probing behavior. Phytoparasitica. 2006;34:315–324. doi: 10.1007/BF02980959. DOI
Fos A., Massonie G. Experimental transmission of plum pox virus by brachycaudus-persicae passerini. Agronomie. 1993;13:515–518. doi: 10.1051/agro:19930608. DOI
Gildow F.E., Damsteegt V.D., Stone A.L., Schneider W.L., Luster D.G., Levy L. Transmission of three north american isolates of plum pox virus: Identification of aphid vectors and species-specific transmission from infected stone fruits; Proceedings of the xixth international symposium on virus and virus–like diseases of temperate fruit crops: Fruit tree diseases, 2004; pp. 207–211.
Glasa M., Boeglin M., Labonne G. Aphid transmission of natural recombinant plum pox virus isolates to different prunus ssp - a contribution for understanding the epidemiology of an atypical ppv; Proceedings of the xixth international symposium on virus and virus–like diseases of temperate fruit crops: Fruit tree diseases; LEUVEN 1: INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; 2004. pp. 217–220.
Lopezmoya J.J., Canto T., Diazruiz J.R., Lopezabella D. Transmission by aphids of a naturally non-transmissible plum pox virus isolate with the aid of potato-virus-y helper component. J. Gen. Virol. 1995;76:2293–2297. doi: 10.1099/0022-1317-76-9-2293. PubMed DOI
Paprstein F., Karesova R., Navratil M. Vi international symposium on plum and prune genetics, breeding and pomology. INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; LEUVEN 1: 1998. Results of plum pox virus transmission into germplasm of plums; pp. 279–282.
Milusheva S., Gercheva P., Bozhkova V., Kamenova I. Experiments on transmission of plum pox virus through prunus seeds. J. Plant Pathol. 2008;90:23–26.
Glasa M., Hriovsky I., Kudela O. Evidence for non-transmission of plum pox virus by seed in infected plum and myrobalan. Biologia. 1999;54:481–484.
Schimanski H.H., Gruntzig M., Fuchs E. Non-transmission of the plum pox virus in plum and apricot seed source clones. Zentralblatt Fur Mikrobiologie. 1988;143:121–123.
Dicenta F., Audergon J.M. Localization of plum pox virus in apricot stem and petiole tissues by tissue printing onto nitrocellulose membrane. Ann. Appl. Biol. 1995;126:105–110. doi: 10.1111/j.1744-7348.1995.tb05006.x. DOI
Hoffmann A., Stockert T., Hartmann W., Stosser R. Localization of plum pox virus (ppv, sharka) in plum (prunus domestica l.) using tissue print immunoblotting (tpib) J. Plant Dis. Prot. 1997;104:411–414.
Rubio M., Gosalvez B., Hernandez J.A., Sanchez-Navarro J.A., Pallas V. Localization of coat protein and nucleic acid of plum pox virus in prunus petiole and stem tissues; Proceedings of the xixth international symposium on virus and virus–like diseases of temperate fruit crops: Fruit tree diseases; LEUVEN 1: INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; 2004. pp. 295–300.
Rubio M., Martinez-Gomez P., Dicenta F. Study of long-distance movement of plum pox virus (sharka) as an alternative resistance-evaluation method in prunus. Sci. Hortic. 2008;118:223–227.
Dicenta F., Martinez-Gomez P., Rubio M., Audergon J.M. Localisation and movement of plum pox virus in apricot stem tissues. Ann. Appl. Biol. 2003;142:99–105. doi: 10.1111/j.1744-7348.2003.tb00234.x. DOI
Quiot J.B., Tab F., Labonne G., Adamolle C., Boeglin M. Location of plum pox virus in peach and apricot trees; Proceedings of the xiith ishs symposium on apricot culture and decline, vols 1 and 2; LEUVEN 1: INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; 2006. pp. 489–492.
Elouaghlidi F., Sautter C. Immunofluorescence localization of plum pox virus and prunus necrotic ringspot virus in tissue-sections of prunus-cerasus and prunus-juxa. J. Plant Dis. Prot. 1988;95:70–76.
Hernandez J.A., Talavera J.M., Martinez-Gomez P., Dicenta F., Sevilla F. Response of antioxidative enzymes to plum pox virus in two apricot cultivars. Physiol. Plant. 2001;111:313–321. doi: 10.1034/j.1399-3054.2001.1110308.x. PubMed DOI
Visedo G., Fernandezpiqueras J., Garcia J.A. Peroxidase isozyme analysis of factors involved in development of symptoms in nicotiana-clevelandii infected by plum pox virus. Physiol. Plant. 1991;83:165–169. doi: 10.1111/j.1399-3054.1991.tb01297.x. DOI
Visedo G., Fernandezpiqueras J., Garcia J.A. Comparison among the isozyme profiles associated with ethrel treatments of leaves, and with senescence and plum pox virus-infection in chenopodium-foetidum. Physiol. Plant. 1991;83:159–164. doi: 10.1111/j.1399-3054.1991.tb01296.x. DOI
Hernandez J.A., Olmos J.E., Portillo B., Rubio M., Dicenta F., Martinez-Gomez P. Effect of plum pox virus infection on photosynthesis and antioxidant enzyme activity in peach 'gf305'; Proceedings of the xixth international symposium on virus and virus–like diseases of temperate fruit crops: Fruit tree diseases; LEUVEN 1: INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; 2004. pp. 349–353.
Diaz-Vivancos P., Clemente-Moreno M.J., Rubio M., Olmos E., Garcia J.A., Martinez-Gomez P., Hernandez J.A. Alteration in the chloroplastic metabolism leads to ros accumulation in pea plants in response to plum pox virus. J. Exp. Bot. 2008;59:2147–2160. doi: 10.1093/jxb/ern082. PubMed DOI PMC
Hernandez J.A., Diaz-Vivancos P., Rubio M., Olmos E., Ros-Barcelo A., Martinez-Gomez P. Long-term plum pox virus infection produces an oxidative stress in a susceptible apricot, prunus armeniaca, cultivar but not in a resistant cultivar. Physiol. Plant. 2006;126:140–152. doi: 10.1111/j.1399-3054.2005.00581.x. DOI
Diaz-Vivancos P., Rubio M., Mesonero V., Martinez-Gomez P., Hernandez J.A., Periago P.M. Effect of plum pox virus infection on the antioxidant capacity of leaf apoplast from apricot plants; Proceedings of the xiiith international symposium on apricot breeding and culture; LEUVEN 1: INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; 2006. pp. 119–122.
Diaz-Vivancos P., Rubio M., Mesonero V., Periago P.M., Barcelo A.R., Martinez-Gomez P., Hernandez J.A. The apoplastic antioxidant system in prunus: Response to long-term plum pox virus infection. J. Exp. Bot. 2006;57:3813–3824. doi: 10.1093/jxb/erl138. PubMed DOI
Escalettes V.S.L., Hullot C., Wawrzy'nczak D., Mathieu E., Eyquard J.P., Le Gall O., Decroocq V. Plum pox virus induces differential gene expression in the partially resistant stone fruit tree prunus armeniaca cv. Goldrich. Gene. 2006;374:96–103. doi: 10.1016/j.gene.2006.01.021. PubMed DOI
Babu M., Griffiths J.S., Huang T.S., Wang A. Altered gene expression changes in arabidopsis leaf tissues and protoplasts in response to plum pox virus infection. Bmc Genomics. 2008:9. PubMed PMC
Wang A., Chapman P., Chen L., Stobbs L.W., Brown D.C.W., Brandle J.E. A comparative survey, by expressed sequence tag analysis, of genes expressed in peach leaves infected with plum pox virus (ppv) and free from ppv. Can. J. Plant Pathol.-Rev. Can. Phytopathol. 2005;27:410–419.
Milosevic T., Milosevic N. Plum pox virus as a stress factor in the one-year-old shoot and fruit growth and yield of plum cv. Stanley. Cereal Res. Commun. 2009;37:241–244.
Milosevic T.M., Glisic I.P., Milosevic N.T., Glisic I.S. Plum pox virus as a stress factor in the vegetative growth, fruit growth and yield of plum (prunus domestica) cv. 'Cacanska rodna'. Eur. J. Plant Pathol. 2010;126:73–79. doi: 10.1007/s10658-009-9526-z. DOI
Garcia-Ibarra A., Clemente-Moreno M.J., Barba-Espin G., Diaz-Vivancos P., Rubio M., Dicenta F., Martinez-Gomez P., Hernandez J.A. Changes in the antioxidative metabolism induced by apple chlorotic leaf spot virus infection in peach [prunus persica (l.) batsch] Environ. Exp. Bot. 2011;70:277–282. doi: 10.1016/j.envexpbot.2010.10.004. DOI
Amari K., Diaz-Vivancos P., Pallas V., Amelia Sanchez-Pina M., Antonio Hernandez J. Oxidative stress induction by prunus necrotic ringspot virus infection in apricot seeds. Physiol. Plant. 2007;131:302–310. PubMed
Clarke S.F., Guy P.L., Burritt D.J., Jameson P.E. Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiol. Plant. 2002;114:157–164. doi: 10.1034/j.1399-3054.2002.1140201.x. PubMed DOI
Farkas G.L., Kiraly Z., Solymosy F. Role of oxidative metabolism in the localization of plant viruses. Virology. 1960;12:408–421. doi: 10.1016/0042-6822(60)90163-X. PubMed DOI
Fodor J., Gullner G., Adam A.L., Barna B., Komives T., Kiraly Z. Local and systemic responses of antioxidants to tobacco mosaic virus infection and to salicylic acid in tobacco - role in systemic acquired resistance. Plant Physiol. 1997;114:1443–1451. PubMed PMC
Kiraly L., Barnaz B., Kiralyz Z. Plant resistance to pathogen infection: Forms and mechanisms of innate and acquired resistance. J. Phytopathol. 2007;155:385–396. doi: 10.1111/j.1439-0434.2007.01264.x. DOI
Kröll J. Experiments to verify the plum pox virus (ppv) by communicating it on chenopodium foetidum schrad. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. 1975;130:226–231. PubMed
Kröll J. Verification of the plum pox virus (ppv) using the tray test. Zentralbl. Bakteriol. Naturwiss. 1978;133:59–64. PubMed
Glasa M., Matisova J., Hricovsky I., Kudela O. Susceptibility of peach gf 305 seedlings and selected herbaceous plants to plum pox virus isolates from western slovakia. Acta Virol. 1997;41:341–344. PubMed
Polak J. European spindle tree and common privet a new natural hosts of plum pox virus; Proceedings of the 18th international symposium on virus & virus–like diseases of temperate fruit crops – top fruit diseases, vols 1 and 2, 2001; pp. 125–128.
Visedo G., Fernandezpiqueras J., Garcia J.A. Isozyme profiles associated with the hypersensitive response of chenopodium-foetidum to plum pox virus-infection. Physiol. Plant. 1990;78:218–224. doi: 10.1111/j.1399-3054.1990.tb02084.x. DOI
Di Terlizzi B., Savino V. Sanitary status and sanitation of stone fruit trees in south east italy; Iobc/wprs and ishs international conference on integrated fruit production, proceedings of the meeting, 1996; pp. 326–327.
Paprstein F., Karesova R. Long term evaluation of plum cultivars artificially infected by ppv; Proceedings of the 18th international symposium on virus & virus–like diseases of temperate fruit crops – top fruit diseases, vols 1 and 2, 2001; pp. 121–123.
James D., Thompson D. Hosts and symptoms of plum pox virus: Ornamental and wild prunus species. EPPO Bull. 2006;36:222–224. doi: 10.1111/j.1365-2338.2006.00976.x. DOI
Rubio M., Martinez-Gomez P., Pinochet J., Dicenta F. Evaluation of resistance to sharka (plum pox virus) of several prunus rootstocks. Plant Breed. 2005;124:67–70.
Martinez-Gomez P., Rubio M., Gambin M., Dicenta F. Behaviour of six prunus rootstocks in presence of sharka (plum pox potyvirus); Proceedings of the xiith ishs symposium on apricot culture and decline, vols 1 and 2; LEUVEN 1: INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; 2006. pp. 227–231.
Zhebentyayeva T.N., Reighard G.L., Lalli D., Gorina V.M., Krska B., Abbott A.G. Origin of resistance to plum pox virus in apricot: What new aflp and targeted ssr data analyses tell. Tree Genet. Genomes. 2008;4:403–417. doi: 10.1007/s11295-007-0119-8. DOI
Damsteegt V.D. 17th international symposium on virus and virus-like diseases of temperate fruit crops: Fruit tree diseases, vols 1 and 2. 1998. The versatility of prunus tomentosa as a bioindicator of viruses; pp. 143–146.
Damsteegt V.D., Waterworth H.E., Mink G.I., Howell W.E., Levy L. Prunus tomentosa as a diagnostic host for detection of plum pox virus and other prunus viruses. Plant Dis. 1997;81:329–332. doi: 10.1094/PDIS.1997.81.4.329. PubMed DOI
Dosba F. Genetics and breeding of tree fruits and nuts. INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; LEUVEN 1: 2003. Progress and prospects in stone fruit breeding; pp. 35–43.
Barnavetro I., Gyorgy B., Schuster V., Varro R. Use of peroxidase labeled antibodies for detection of plum pox virus. Acta Phyto. Acad. Sci. Hung. 1980;15:333–338.
Adams A.N., Guise C.M., Crossley S.J. Plum pox virus detection in dormant plum trees by pcr and elisa. Plant Pathol. 1999;48:240–244. doi: 10.1046/j.1365-3059.1999.00336.x. DOI
Caglayan K., Sertkaya G., Ulubas C., Kolber M., Krizbai L. Characterization of plum pox potyvirus (ppv) by das-elisa and rt-pcr/rflp analysis in turkey; Proceedings of the xixth international symposium on virus and virus–like diseases of temperate fruit crops: Fruit tree diseases, 2004; pp. 183–188.
Dovas C.I., Mamolos A.P., Katis N.I. Fluctuations in concentration of two potyviruses in garlic during the growing period and sampling conditions for reliable detection by elisa. Ann. Appl. Biol. 2002;140:21–28. doi: 10.1111/j.1744-7348.2002.tb00153.x. DOI
Thomidis T., Karajiannis I. Using elisa and pcr to test the potential for spread of plum pox virus by seeds of different stone fruit cultivars. N. Z. J. Crop Hortic. Sci. 2003;31:69–72. doi: 10.1080/01140671.2003.9514237. DOI
Asensio M., Gorris M.T., Sanz A., Camarasa E., Perez E., Carbonell E.A., Cambra M. Characterization and detection of plum pox virus using monoclonal antibodies; Xvith international symposium on fruit tree virus diseases, 1995; pp. 354–356.
Lopezmoya J.J., Sanz A., Cambra M., Gorris M.T., Anaya C., Miguet J.G., Cortes E., Lopezabella D. Production and characterization of monoclonal-antibodies to plum pox virus and their use in differentiation of mediterranean isolates. Arch. Virol. 1994;135:293–304. doi: 10.1007/BF01310015. PubMed DOI
Orban S., Theilmann J., Rochon D. Production of polyclonal antibodies for the detection of plum pox virus in leaf tissue by a modified das-elisa assay. Can. J. Plant Pathol.-Rev. Can. Phytopathol. 2007;29:86–86.
Richter J., Proll E., Rabenstein F., Stanarius A. Serological detection of members of the potyviridae with polyclonal antisera. J. Phytopathol. 1994;142:11–18.
Hilgert I., Cikanek D., Kristofova H., Karesova R., Navratil M. Monoclonal-antibodies suitable for plum pox virus determination. Hybridoma. 1993;12:215–220. doi: 10.1089/hyb.1993.12.215. PubMed DOI
Myrta A., Potere O., Boscia D., Candresse T., Cambra M., Savino V. Production of a monoclonal antibody specific to the el amar strain of plum pox virus. Acta Virol. 1998;42:248–250. PubMed
Cambra M., Asensio M., Gorris M.T., Pérez E., Camarasa E., Garcia J.A., Moya J.J., Lopez-Abella D., Vela C., Sanz A. Detection of plum pox potyvirus using monoclonal antibodies to structural and non-structural proteins. EPPO Bull. 1994;24:569–577. doi: 10.1111/j.1365-2338.1994.tb01070.x. DOI
Martin M.T., Garcia J.A., Cervera M.T., Goldbach R.W., Vanlent J.W.M. Intracellular-localization of 3 nonstructural plum pox potyvirus proteins by immunogold labeling. Virus Res. 1992;25:201–211. doi: 10.1016/0168-1702(92)90134-U. DOI
Purcifull D.E., Hiebert E. Serological relationships involving potyviral nonstructural proteins. Arch. Virol. 1992:97–122. doi: 10.1007/978-3-7091-6920-9_11. PubMed DOI
Ravelonandro M., Peyruchaud O., Garrigue L., Demarcillac G., Dunez J. Immunodetection of the plum pox virus helper component in infected plants and expression of its gene in transgenic plants. Arch. Virol. 1993;130:251–268. doi: 10.1007/BF01309658. PubMed DOI
Gil M., Esteban O., Garcia J.A., Pena L., Cambra M. Resistance to plum pox virus in plants expressing cytosolic and nuclear single-chain antibodies against the viral rna nib replicase. Plant Pathol. 2011;60:967–976. doi: 10.1111/j.1365-3059.2011.02448.x. DOI
Olmos A., Cambra M., Dasi M.A., Candresse T., Esteban O., Gorris M.T., Asensio M. Simultaneous detection and typing of plum pox potyvirus (ppv) isolates by heminested-pcr and pcr-elisa. J. Virol. Methods. 1997;68:127–137. doi: 10.1016/S0166-0934(97)00120-1. PubMed DOI
Kamenova I., Peters D. The differential reactivity of two polyclonal antisera to plum pox virus isolates collected at different stages after immunization. Biotechnol. Biotechnol. Equip. 1999;13:33–39.
Subr Z., Matisova J. Preparation of diagnostic monoclonal antibodies against two potyviruses. Acta Virol. 1999;43:255–257. PubMed
Himmler G., Brix U., Steinkellner H., Laimer M., Mattanovich D., Katinger H.W.D. Early screening for anti-plum pox virus monoclonal-antibodies with different epitope specificities by means of gold-labeled immunosorbent electron-microscopy. J. Virol. Methods. 1988;22:351–358. doi: 10.1016/0166-0934(88)90118-8. PubMed DOI
Jarocka U., Wasowicz M., Radecka H., Malinowski T., Michalczuk L., Radecki J. Impedimetric immunosensor for detection of plum pox virus in plant extracts. Electroanalysis. 2011;23:2197–2204. doi: 10.1002/elan.201100152. DOI
Pollini C.P., Giunchedi L., Bissani R. Specific detection of d- and m-isolates of plum pox virus by immunoenzymatic determination of pcr products. J. Virol. Methods. 1997;67:127–133. doi: 10.1016/S0166-0934(97)00085-2. PubMed DOI
Youssef S.A., Shalaby A.A., Mazyad H.M., Hadidi A. Detection and identification of prune dwarf virus and plum pox virus by standard and multiplex rt-pcr probe capture hybridization (rt-pcr-elisa) J. Plant Pathol. 2002;84:113–119.
Wetzel T., Candresse T., Ravelonandro M., Delbos R.P., Mazyad H., Aboulata A.E., Dunez J. Nucleotide-sequence of the 3'-terminal region of the rna of the elamar strain of plum pox potyvirus. Journal of General Virology. 1991;72:1741–1746. doi: 10.1099/0022-1317-72-7-1741. PubMed DOI
Wetzel T., Candresse T., Ravelonandro M., Dunez J. A polymerase chain-reaction assay adapted to plum pox potyvirus detection. J. Virol. Methods. 1991;33:355–365. doi: 10.1016/0166-0934(91)90035-X. PubMed DOI
Subr Z., Glasa M. Plum pox virus variability detected by the advanced analytical methods. Acta Virol. 2008;52:75–89. PubMed
Wetzel T., Tavert G., Teycheney P.Y., Ravelonandro M., Candresse T., Dunez J. Dot hybridization detection of plum pox virus using p-32 labeled rna probes representing nonstructural viral protein genes. J. Virol. Methods. 1990;30:161–171. doi: 10.1016/0166-0934(90)90017-A. PubMed DOI
Varveri C., Candresse T., Cugusi M., Ravelonandro M., Dunez J. Use of a p-32-labeled transcribed rna probe for dot hybridization detection of plum pox virus. Phytopathology. 1988;78:1280–1283. doi: 10.1094/Phyto-78-1280. DOI
Hammond J., Puhringer H., Machado A.D., Machado M.L.D. A broad-spectrum pcr assay combined with rflp analysis for detection and differentiation of plum pox virus isolates; 17th international symposium on virus and virus-like diseases of temperate fruit crops: Fruit tree diseases, vols 1 and 2; LEUVEN 1: INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; 1998. pp. 483–490.
Gadiou S., Safarova D., Navratil M. Differentiation of plum pox virus isolates by single-strand conformation polymorphism and low-stringency single specific primer pcr analysis of hc-pro genome region. Acta Virol. 2009;53:53–56. PubMed
Subr Z., Pittnerova S., Glasa M. A simplified rt-pcr-based detection of recombinant plum pox virus isolates. Acta Virol. 2004;48:173–176. PubMed
Spiegel S., Kovalenko E.M., Varga A., James D. Detection and partial molecular characterization of two plum pox virus isolates from plum and wild apricot in southeast kazakhstan. Plant Dis. 2004;88:973–979. doi: 10.1094/PDIS.2004.88.9.973. PubMed DOI
Szemes M., Kalman M., Myrta A., Boscia D., Nemeth M., Kolber M., Dorgai L. Integrated rt-pcr/nested pcr diagnosis for differentiating between subgroups of plum pox virus. J. Virol. Methods. 2001;92:165–175. doi: 10.1016/S0166-0934(00)00284-6. PubMed DOI
Pasquini G., Barba M., Hadidi A., Faggioli F., Negri R., Sobol I., Tiberini A., Caglayan K., Mazyad H., Anfoka G., et al. Oligonucleotide microarray-based detection and genotyping of plum pox virus. J. Virol. Methods. 2008;147:118–126. doi: 10.1016/j.jviromet.2007.08.019. PubMed DOI
Olmos A., Bertolini E., Gil M., Cambra M. Real-time assay for quantitative detection of non-persistently transmitted plum pox virus rna targets in single aphids. J. Virol. Methods. 2005;128:151–155. doi: 10.1016/j.jviromet.2005.05.011. PubMed DOI
Capote N., Gorris M.T., Martinez M.C., Asensio M., Olmos A., Cambra M. Interference between d and m types of plum pox virus in japanese plum assessed by specific monoclonal antibodies and quantitative real-time reverse transcription-polymerase chain reaction. Phytopathology. 2006;96:320–325. doi: 10.1094/PHYTO-96-0320. PubMed DOI
Kim W.S., Stobbs L.W., Lehman S.M., James D., Svircev A.M. Direct real-time pcr detection of plum pox virus in field surveys in ontario. Can. J. Plant Pathol.-Rev. Can. Phytopathol. 2008;30:308–317.
Capote N., Bertolini E., Olmos A., Vidal E., Martinez M.C., Cambra M. Direct sample preparation methods for the detection of plum pox virus by real-time rt-pcr. Int. Microbiol. 2009;12:1–6. PubMed
Levy L., Kolber M., Tokes G., Nemeth M., Hadidi A. 3' non-coding region rt-pcr detection and molecular hybridization of plum pox virus in anthers of infected stone fruit; Xvith international symposium on fruit tree virus diseases; LOUVAIN: INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; 1995. pp. 331–339.
Schneider W.L., Sherman D.J., Stone A.L., Damsteegt V.D., Frederick R.D. Specific detection and quantification of plum pox virus by real-time fluorescent reverse transcription-pcr. J. Virol. Methods. 2004;120:97–105. doi: 10.1016/j.jviromet.2004.04.010. PubMed DOI
Varga A., James D. Real-time rt-pcr and sybr green i melting curve analysis for the identification of plum pox virus strains c, ea, and w: Effect of amplicon size, melt rate, and dye translocation. J. Virol. Methods. 2006;132:146–153. doi: 10.1016/j.jviromet.2005.10.004. PubMed DOI
Varga A., James D. Detection and differentiation of plum pox virus using real-time multiplex pcr with sybr green and melting curve analysis: A rapid method for strain typing. J. Virol. Methods. 2005;123:213–220. doi: 10.1016/j.jviromet.2004.10.005. PubMed DOI
Korschineck I., Himmler G., Sagl R., Steinkellner H., Katinger H.W.D. A pcr membrane spot assay for the detection of plum pox virus-rna in bark of infected trees. J. Virol. Methods. 1991;31:139–146. doi: 10.1016/0166-0934(91)90152-P. PubMed DOI
Olmos A., Bertolini E., Cambra M. Simultaneous and co-operational amplification (co-pcr): A new concept for detection of plant viruses. J. Virol. Methods. 2002;106:51–59. doi: 10.1016/S0166-0934(02)00132-5. PubMed DOI
Bertolini E., Torres E., Olmos A., Martin M.P., Bertaccini A., Cambra M. Co-operational pcr coupled with dot blot hybridization for detection and 16srx grouping of phytoplasmas. Plant Pathol. 2007;56:677–682. doi: 10.1111/j.1365-3059.2007.01601.x. DOI
Martos S., Torres E., El Bakali M.A., Raposo R., Gramaje D., Armengol J., Luque J. Co-operational pcr coupled with dot blot hybridization for the detection of phaeomoniella chlamydospora on infected grapevine wood. J. Phytopathol. 2011;159:247–254. doi: 10.1111/j.1439-0434.2010.01758.x. DOI
Wetzel T., Candresse T., Macquaire G., Ravelonandro M., Dunez J. A highly sensitive immunocapture polymerase chain-reaction method for plum pox potyvirus detection. J. Virol. Methods. 1992;39:27–37. doi: 10.1016/0166-0934(92)90122-T. PubMed DOI
Sreenivasulu M., Gopal D. Development of recombinant coat protein antibody based ic-rt-pcr and comparison of its sensitivity with other immunoassays for the detection of papaya ringspot virus isolates from india, (vol 26, pg 25, 2010) Plant Pathol. J. 2010;26:207. doi: 10.5423/PPJ.2010.26.2.207. DOI
Sreenivasulu M., Gopal D. Development of recombinant coat protein antibody based ic-rt-pcr and comparison of its sensitivity with other immunoassays for the detection of papaya ringspot virus isolates from india. Plant Pathol. J. 2010;26:25–31. doi: 10.5423/PPJ.2010.26.1.025. DOI
Huang C.H., Hu W.C., Yang T.C., Chang Y.C. Zantedeschia mild mosaic virus, a new widespread virus in calla lily, detected by elisa, dot-blot hybridization and ic-rt-pcr. Plant Pathol. 2007;56:183–189.
Hema M., Kirthi N., Sreeivasulu P., Savithri H.S. Development of recombinant coat protein antibody based ic-rt-pcr for detection and discrimination of sugarcane streak mosaic virus isolates from southern india. Arch. Virol. 2003;148:1185–1193. doi: 10.1007/s00705-003-0015-y. PubMed DOI
Olmos A., Bertolini E., Cambra M. Isothermal amplification coupled with rapid flow-through hybridisation for sensitive diagnosis of plum pox virus. J. Virol. Methods. 2007;139:111–115. doi: 10.1016/j.jviromet.2006.09.012. PubMed DOI
Olmos A., Bertolini E., Cambra M. Isothermal amplification for detection of plum pox virus; Proceedings of the twentieth international symposium on virus and virus–like diseases of temperate fruit crops – fruit tree diseases; LEUVEN 1: INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; 2008. pp. 209–213.
Hadersdorfer J., Neumuller M., Treutter D., Fischer T.C. Fast and reliable detection of plum pox virus in woody host plants using the blue lamp protocol. Ann. Appl. Biol. 2011;159:456–466. doi: 10.1111/j.1744-7348.2011.00510.x. DOI
Capote N., Bertolini E., Martinez M.C., Olmos A., Gorris M.T., Cambra M. Spot real-time rt-pcr: A method for direct detection of plum pox virus avoiding rna extraction; Proceedings of the twentieth international symposium on virus and virus–like diseases of temperate fruit crops – fruit tree diseases; LEUVEN 1: INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE; 2008. pp. 215–219.
Sanchez F., Sobolev K. Nanotechnology in concrete - a review. Constr. Build. Mater. 2010;24:2060–2071. doi: 10.1016/j.conbuildmat.2010.03.014. DOI
Shea C.M., Grinde R., Elmslie B. Nanotechnology as general-purpose technology: Empirical evidence and implications. Tech. Anal. Strat. Manag. 2011;23:175–192. doi: 10.1080/09537325.2011.543336. DOI
Banerjee R., Katsenovich Y., Lagos L., McIintosh M., Zhang X., Li C.Z. Nanomedicine: Magnetic nanoparticles and their biomedical applications. Curr. Med. Chem. 2010;17:3120–3141. doi: 10.2174/092986710791959765. PubMed DOI
Cai S., Yang Q.H., Bagby T.R., Forrest M.L. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv. Drug Deliv. Rev. 2011;63:901–908. doi: 10.1016/j.addr.2011.05.017. PubMed DOI PMC
Feng B., Matsui H., Tomizawa K. Nanoparticle-based drug delivery systems for solid brain tumors. Curr. Nanosci. 2011;7:47–54. doi: 10.2174/157341311794480327. DOI
Ghaderi S., Ramesh B., Seifalian A.M. Fluorescence nanoparticles "quantum dots" as drug delivery system and their toxicity: A review. J. Drug Target. 2011;19:475–486. doi: 10.3109/1061186X.2010.526227. PubMed DOI
Chen G.J., Wang L.F. Design of magnetic nanoparticles-assisted drug delivery system. Curr. Pharm. Design. 2011;17:2331–2351. doi: 10.2174/138161211797052574. PubMed DOI
Malam Y., Lim E.J., Seifalian A.M. Current trends in the application of nanoparticles in drug delivery. Curr. Med. Chem. 2011;18:1067–1078. doi: 10.2174/092986711794940860. PubMed DOI
Parveen S., Misra R., Sahoo S.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed.-Nanotechnol. Biol. Med. 2012;8:147–166. doi: 10.1016/j.nano.2011.05.016. PubMed DOI
Paulo C.S.O., das Neves R.P., Ferreira L.S. Nanoparticles for intracellular-targeted drug delivery. Nanotechnology. 2011:22. PubMed
Prow T.W., Grice J.E., Lin L.L., Faye R., Butler M., Becker W., Wurm E.M.T., Yoong C., Robertson T.A., Soyer H.P., et al. Nanoparticles and microparticles for skin drug delivery. Adv. Drug Deliv. Rev. 2011;63:470–491. doi: 10.1016/j.addr.2011.01.012. PubMed DOI
Su X., Zhan X., Tang F., Yao J.Y., Wu J. Magnetic nanoparticles in brain disease diagnosis and targeting drug delivery. Curr. Nanosci. 2011;7:37–46. doi: 10.2174/157341311794480363. DOI
Talekar M., Kendall J., Denny W., Garg S. Targeting of nanoparticles in cancer: Drug delivery and diagnostics. Anti-Cancer Drugs. 2011;22:949–962. doi: 10.1097/CAD.0b013e32834a4554. PubMed DOI
Yoo J.W., Doshi N., Mitragotri S. Adaptive micro and nanoparticles: Temporal control over carrier properties to facilitate drug delivery. Adv. Drug Deliv. Rev. 2011;63:1247–1256. doi: 10.1016/j.addr.2011.05.004. PubMed DOI
Eggenberger K., Frey N., Zienicke B., Siebenbrock J., Schunck T., Fischer R., Brase S., Birtalan E., Nann T., Nick P. Use of nanoparticles to study and manipulate plant cells. Adv. Eng. Mater. 2010;12:B406–B412. doi: 10.1002/adem.201080009. DOI
Baruah S., Dutta J. Nanotechnology applications in pollution sensing and degradation in agriculture: A review. Environ. Chem. Lett. 2009;7:191–204. doi: 10.1007/s10311-009-0228-8. DOI
Knauer K., Bucheli T. Nano-materials - the need for research in agriculture. Agrarforschung. 2009;16:390–395.
Knauer K., Bucheli T.D. Nano-materials: Research needs in agriculture. Rev. Suisse Agric. 2009;41:341–345.
Shrivastava S., Dash D. Agrifood nanotechnology: A tiny revolution in food and agriculture. J. Nano Res. 2009;6:1–14. doi: 10.4028/www.scientific.net/JNanoR.6.1. DOI
Lokko Y., Mba C., Spencer M., Till B., Lagoda P. Nanotechnology and synthetic biology - potential in crop improvement. J. Food Agric. Environ. 2011;9:599–604.
Young M., Willits D., Uchida M., Douglas T. Plant viruses as biotemplates for materials and their use in nanotechnology. In Annu. Rev. Phytopathol. 2008:361–384. PubMed
Aniagyei S.E., DuFort C., Kao C.C., Dragnea B. Self-assembly approaches to nanomaterial encapsulation in viral protein cages. J. Mater. Chem. 2008;18:3763–3774. doi: 10.1039/b805874c. PubMed DOI PMC
Srivastava S.K. Use of plant viruses and their genes in the areas of biotechnology and nanotechnology. Indian J. Virol. 2008;19:101–102.
Behrens S.S. Synthesis of inorganic nanomaterials mediated by protein assemblies. J. Mater. Chem. 2008;18:3788–3798. doi: 10.1039/b806551a. DOI
Lee S.Y., Lim J.S., Harris M.T. Synthesis and application of virus-based hybrid nanomaterials. Biotechnol. Bioeng. 2012;109:16–30. doi: 10.1002/bit.23328. PubMed DOI
Royston E., Ghosh A., Kofinas P., Harris M.T., Culver J.N. Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. Langmuir. 2008;24:906–912. doi: 10.1021/la7016424. PubMed DOI
Soto C.M., Ratna B.R. Virus hybrids as nanomaterials for biotechnology. Curr. Opin. Biotechnol. 2010;21:426–438. doi: 10.1016/j.copbio.2010.07.004. PubMed DOI
Zhou Y. Recent progress in biomolecule-templated nanomaterials. Curr. Nanosci. 2006;2:123–134. doi: 10.2174/157341306776875785. DOI
Flenniken M.L., Uchida M., Liepold L.O., Kang S., Young M.J., Douglas T. Viruses and nanotechnology. 2009. A library of protein cage architectures as nanomaterials; pp. 71–93. PubMed
Franzen S., Lockney D.M., Wang R.Q., Lommel S., Hauck M. In vivo imaging and tumor targeting using a plant virus nanoparticle. Abstr. Pap. Am. Chem. Soc. 2011:241.
Lockney D.M., Guenther R.N., Loo L., Overton W., Antonelli R., Clark J., Hu M., Luft C., Lommel S.A., Franzen S. The red clover necrotic mosaic virus capsid as a multifunctional cell targeting plant viral nanoparticle. Bioconjugate Chem. 2011;22:67–73. doi: 10.1021/bc100361z. PubMed DOI
Liang M.M., Guo L.H. Application of nanomaterials in environmental analysis and monitoring. J. Nanosci. Nanotechnol. 2009;9:2283–2289. doi: 10.1166/jnn.2009.SE22. PubMed DOI
Martin C.R. Nanomaterials: Evolving applications in membranes, energy production, and analytical chemistry. Abstr. Pap. Am. Chem. Soc. 2000;219:U727–U727.
Martin C.R., Mitchell D.T. Nanomaterials in analytical chemistry. Anal. Chem. 1998;70:322–327. doi: 10.1021/ac9818430. PubMed DOI
Scida K., Stege P.W., Haby G., Messina G.A., Garcia C.D. Recent applications of carbon-based nanomaterials in analytical chemistry: Critical review. Anal. Chim. Acta. 2011;691:6–17. doi: 10.1016/j.aca.2011.02.025. PubMed DOI PMC
Valentini F., Palleschi G. Nanomaterials and analytical chemistry. Anal. Lett. 2008;41:479–520. doi: 10.1080/00032710801912805. DOI
Bandyopadhyay A., Chatterjee S., Sarkar K. Rapid isolation of genomic DNA from e. Coli xl1 blue strain approaching bare magnetic nanoparticles. Curr. Sci. 2011;101:210–214.
Chiang C.L., Sung C.S., Chen C.Y. Application of silica-magnetite nanocomposites to the isolation of ultrapure plasmid DNA from bacterial cells. J. Magn. Magn. Mater. 2006;305:483–490. doi: 10.1016/j.jmmm.2006.02.088. DOI
Sarkar T.R., Irudayaraj J. Carboxyl-coated magnetic nanoparticles for mrna isolation and extraction of supercoiled plasmid DNA. Anal. Biochem. 2008;379:130–132. PubMed
Zhang H.P., Bai S., Xu L., Sun Y. Fabrication of mono-sized magnetic anion exchange beads for plasmid DNA purification. J. Chromatogr. B. 2009;877:127–133. doi: 10.1016/j.jchromb.2008.11.026. PubMed DOI
Masarik M., Gumulec J., Sztalmachova M., Hlavna M., Babula P., Krizkova S., Ryvolova M., Jurajda M., Sochor J., Adam V., et al. Isolation of metallothionein from cells derived from aggressive form of high-grade prostate carcinoma using paramagnetic antibody-modified microbeads off-line coupled with electrochemical and electrophoretic analysis. Electrophoresis. 2011;32:3576–3588. PubMed
Adam V., Huska D., Hubalek J., Kizek R. Easy to use and rapid isolation and detection of a viral nucleic acid by using paramagnetic microparticles and carbon nanotubes-based screen-printed electrodes. Microfluid. Nanofluid. 2010;8:329–339. doi: 10.1007/s10404-009-0464-z. DOI
Huska D., Hubalek J., Adam V., Vajtr D., Horna A., Trnkova L., Havel L., Kizek R. Automated nucleic acids isolation using paramagnetic microparticles coupled with electrochemical detection. Talanta. 2009;79:402–411. doi: 10.1016/j.talanta.2009.04.007. PubMed DOI
Masarik M., Huska D., Adam V., Hubalek J., Provaznik I., Trnkova L., Kizek R. Automated pipetting system coupled with micro- and nanopartieles as a new tool for study of nucleic acids. Int. J. Mol. Med. 2010;26:S46–S46.
Wang J., Hui F., Fang X.W., Vinciguerra J., Hunicke-Smith S., WalkerPeach C.R. Magnetic bead-based viral nucleic acid isolation incorporating a quantitative internal control. J. Mol. Diagn. 2004;6:427–427.
Zhang Z.C., Cui Y., Wan Q.H. Surface modification of magnetic silica microspheres and its application to the isolation of plant genomic nucleic acids. Chin. J. Anal. Chem. 2007;35:31–36. doi: 10.1016/S1872-2040(07)60024-3. DOI
Miszczak F., Shuck K.M., Lu Z.C., Go Y.Y., Zhang J.Q., Sells S., Vabret A., Pronost S., Fortier G., Timoney P.J., et al. Evaluation of two magnetic-bead-based viral nucleic acid purification kits and three real-time reverse transcription-pcr reagent systems in two taqman assays for equine arteritis virus detection in semen. J. Clin. Microbiol. 2011;49:3694–3696. doi: 10.1128/JCM.01187-11. PubMed DOI PMC
Sun H.X., Zeng X., Liu M., Elingarami S., Li G.P., Shen B., He N.Y. Synthesis of size-controlled fe3o4@sio2 magnetic nanoparticles for nucleic acid analysis. J. Nanosci. Nanotechnol. 2012;12:267–273. doi: 10.1166/jnn.2012.5170. PubMed DOI
Yang S.Y., Chieh J.J., Wang W.C., Yu C.Y., Hing N.S., Horng H.E., Hong C.Y., Yang H.C., Chang C.F., Lin H.Y. Magnetic nanoparticles for high-sensitivity detection on nucleic acids via superconducting-quantum-interference-device-based immunomagnetic reduction assay. J. Magn. Magn. Mater. 2011;323:681–685. doi: 10.1016/j.jmmm.2010.10.011. DOI
Byzova N.A., Safenkova I.V., Chirkov S.N., Avdienko V.G., Guseva A.N., Mitrofanova I.V., Zherdev A.V., Dzantiev B.B., Atabekov J.G. Interaction of plum pox virus with specific colloidal gold-labeled antibodies and development of immunochromatographic assay of the virus. Biochem.-Moscow. 2010;75:1393–1403. doi: 10.1134/S000629791011012X. PubMed DOI
Safenkova I.V., Zherdev A.V., Dzantiev B.B. Correlation between the composition of multivalent antibody conjugates with colloidal gold nanoparticles and their affinity. J. Immunol. Methods. 2010;357:17–25. doi: 10.1016/j.jim.2010.03.010. PubMed DOI