Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23555967
PubMed Central
PMC3608618
DOI
10.1371/journal.pone.0060399
PII: PONE-D-12-31120
Knihovny.cz E-zdroje
- MeSH
- amnion imunologie mikrobiologie MeSH
- infekční komplikace v těhotenství diagnóza imunologie MeSH
- kohortové studie MeSH
- lidé MeSH
- mladý dospělý MeSH
- novorozenec MeSH
- plodová voda imunologie mikrobiologie MeSH
- proteiny analýza imunologie MeSH
- těhotenství MeSH
- Ureaplasma imunologie izolace a purifikace MeSH
- ureaplasmatické infekce diagnóza imunologie MeSH
- zánět imunologie mikrobiologie MeSH
- Check Tag
- lidé MeSH
- mladý dospělý MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny MeSH
OBJECTIVE: This study aimed to evaluate the amniotic fluid protein profiles and the intensity of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria, using the multiplex xMAP technology. METHODS: A retrospective cohort study was undertaken in the Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Czech Republic. A total of 145 pregnant women with preterm prelabor rupture of membranes between gestational age 24+0 and 36+6 weeks were included in the study. Amniocenteses were performed. The presence of Ureaplasma spp. and other bacteria was evaluated using 16S rRNA gene sequencing. The levels of specific proteins were determined using multiplex xMAP technology. RESULTS: The presence of Ureaplasma spp. and other bacteria in the amniotic fluid was associated with increased levels of interleukin (IL)-6, IL-8, IL-10, brain-derived neurotropic factor, granulocyte macrophage colony stimulating factor, monocyte chemotactic protein-1, macrophage inflammatory protein-1, and matrix metalloproteinasis-9. Ureaplasma spp. were also associated with increased levels of neurotropin-3 and triggering receptor expressed on myeloid cells-1. CONCLUSIONS: The presence of Ureaplasma spp. in the amniotic fluid is associated with a slightly different protein profile of inflammatory response, but the intensity of inflammatory response to Ureaplasma spp. is comparable with the inflammatory response to other bacteria.
Zobrazit více v PubMed
Jacobsson B, Mattsby-Baltzer I, Andersch B, Bokstrom H, Holst RM, et al. (2003) Microbial invasion and cytokine response in amniotic fluid in a Swedish population of women with preterm prelabor rupture of membranes. Acta Obstet Gynecol Scand 82: 423–431. PubMed
Kacerovsky M, Pliskova L, Bolehovska R, Musilova I, Hornychova H, et al. (2011) The microbial load with genital mycolasmas correlated with the degree of histologic chorioamnionitis in preterm PPROM. Am J Obstet Gynecol. 2011 205: 213.e1–e7. PubMed
Jacobsson B, Mattsby-Baltzer I, Andersch B, Bokstrom H, Holst RM, et al. (2003) Microbial invasion and cytokine response in amniotic fluid in a Swedish population of women in preterm labor. Acta Obstet Gynecol Scand 82: 120–128. PubMed
Aaltonen R, Heikkinen J, Vahlberg T, Jensen J, Alanen A (2007) Local inflammatory response in choriodecidua induced by Ureaplasma urealyticum. BJOG 114: 1432–1435. PubMed
Oh KJ, Lee KA, Sohn YK, Park CW, Hong JS, et al. (2010) Intraamniotic infection with genital mycoplasmas exhibits a more intense inflammatory response than intraamniotic infection with other microorganisms in patients with preterm premature rupture of membranes. Am J Obstet Gynecol 203: 211 e211–218. PubMed PMC
Kacerovsky M, Musilova I, Khatibi A, Skogstrand K, Hougaard DM, et al. (2012) Intraamniotic inflammatory response to bacteria: analysis of multiple amniotic fluid proteins in women with preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2012doi:10.3109/14767058.2012.671873 PubMed DOI
Cobo T, Kacerovsky M, Holst RM, Hougaard DM, Skogstrand K, et al. (2012) Intra-amniotic inflammation predicts microbial invasion of the amniotic cavity but not spontaneous preterm delivery in preterm prelabor membrane rupture. Acta Obstet Gynecol Scand 2012doi:10.1111/j.1600–0412.2012.01427.x PubMed DOI
Holst RM, Hagberg H, Wennerholm UB, Skogstrand K, Thorsen P, et al. (2011) Prediction of microbial invasion of the amniotic cavity in women with preterm labour: analysis of multiple proteins in amniotic and cervical fluids. BJOG 118: 240–249. PubMed
Menon R, Peltier MR, Eckardt J, Fortunato SJ (2009) Diversity in cytokine response to bacteria associated with preterm birth by fetal membranes. Am J Obstet Gynecol 201: 306 e301–306. PubMed
Zaga-Clavellina V, Garcia-Lopez G, Flores-Herrera H, Espejel-Nunez A, Flores-Pliego A, et al. (2007) In vitro secretion profiles of interleukin (IL)-1beta, IL-6, IL-8, IL-10, and TNF alpha after selective infection with Escherichia coli in human fetal membranes. Reprod Biol Endocrinol 5: 46. PubMed PMC
Zaga-Clavellina V, Martha RV, Flores-Espinosa P (2012) In vitro secretion profile of pro-inflammatory cytokines IL-1beta, TNF-alpha, IL-6, and of human beta-defensins (HBD)-1, HBD-2, and HBD-3 from human chorioamniotic membranes after selective stimulation with Gardnerella vaginalis. Am J Reprod Immunol 67: 34–43. PubMed
Zaga-Clavellina V, Garcia-Lopez G, Flores-Espinosa P (2012) Evidence of in vitro differential secretion of human beta-defensins-1, -2, and -3 after selective exposure to Streptococcus agalactiae in human fetal membranes. J Matern Fetal Neonatal Med 25: 358–363. PubMed
Holst RM, Hagberg H, Wennerholm UB, Skogstrand K, Thorsen P, et al. (2011) Prediction of microbial invasion of the amniotic cavity in women with preterm labour: analysis of multiple proteins in amniotic and cervical fluids. BJOG 118: 240–249. PubMed
Holst RM, Hagberg H, Wennerholm UB, Skogstrand K, Thorsen P, et al. (2009) Prediction of spontaneous preterm delivery in women with preterm labor: analysis of multiple proteins in amniotic and cervical fluids. Obstet Gynecol 114: 268–277. PubMed
Vogel I, Goepfert AR, Thorsen P, Skogstrand K, Hougaard DM, et al. (2007) Early second-trimester inflammatory markers and short cervical length and the risk of recurrent preterm birth. J Reprod Immunol 75: 133–140. PubMed
Lemon KP, Klepac-Ceraj V, Schiffer HK, Brodie EL, Lynch SV, et al. (2010) Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. J Mol Biol 215: 403–410. PubMed PMC
He X, Hu W, He J, Guo L, Lux R, et al. (2011) Community-based interference against integration of Pseudomonas aeruginosa into human salivary microbial biofilm. Mol Oral Microbiol 26: 337–352. PubMed PMC
Maldonado-Contreras A, Goldfarb KC, Godoy-Vitorino F, Karaoz U, Contreras M, et al. (2011) Structure of the human gastric bacterial community in relation to Helicobacter pylori status. ISME J 5: 574–579. PubMed PMC
Shiga H, Kajiura T, Shinozaki J, Takagi S, Kinouchi Y, et al. (2012) Changes of faecal microbiota in patients with Crohn's disease treated with an elemental diet and total parenteral nutrition. Dig Liver Dis 44: 736–742. PubMed
Nemoto H, Kataoka K, Ishikawa H, Ikata K, Arimochi H, et al. (2012) Reduced diversity and imbalance of fecal microbiota in patients with ulcerative colitis. Dig Dis Sci 57: 2955–2964. PubMed
Sakamoto M, Huang Y, Ohnishi M, Umeda M, Ishikawa I, et al. (2004) Changes in oral microbial profiles after periodontal treatment as determined by molecular analysis of 16S rRNA genes. J Med Microbil 53: 563–571. PubMed
Sakamoto M, Takeuchi Y, Umeda M, Ishikawa I, Benno Y (2003) Application of terminal RFLP analysis to characterize oral bacterial flora in saliva of healthy subjects and patients with periodontitis. J Med Microbiol 52: 79–89. PubMed
Polgarova K, Behuliak M, Celec P (2010) Effect of saliva processing on bacterial DNA extraction. New Microbiol 33: 373–379. PubMed
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410. PubMed
Tashima LS, Millar LK, Bryant-Greenwood GD (1999) Genes upregulated in human fetal membranes by infection or labor. Obstet Gynecol 94: 441–449. PubMed
Romero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel L, et al. (2007) The role of inflammation and infection in preterm birth. Semin Reprod Med 25: 21–39. PubMed PMC
Hamilton JA (2002) GM-CSF in inflammation and autoimmunity. Trends Immunol 23: 403–408. PubMed
Xu X, Jackson PL, Tanner S, Hardison MT, Abdul Roda M, et al. (2011) A self-propagating matrix metalloprotease-9 (MMP-9) dependent cycle of chronic neutrophilic inflammation. PLoS One 6: e15781. PubMed PMC
Chakrabarti S, Patel KD (2005) Regulation of matrix metalloproteinase-9 release from IL-8-stimulated human neutrophils. J Leukoc Biol 78: 279–288. PubMed
Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, et al. (2002) Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 37: 375–536. PubMed
DiGiulio DB, Romero R, Kusanovic JP, Gomez R, Kim CJ, et al. (2010) Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol 64: 38–57. PubMed PMC
DiGiulio DB (2012) Diversity of microbes in amniotic fluid. Semin Fetal Neonatal Med17: 2–11. PubMed
Cervical Gardnerella vaginalis in women with preterm prelabor rupture of membranes
Late preterm prelabor rupture of fetal membranes: fetal inflammatory response and neonatal outcome
Maternal Serum C-Reactive Protein in Women with Preterm Prelabor Rupture of Membranes
Intraamniotic Inflammation in Women with Preterm Prelabor Rupture of Membranes
Cervical microbiota in women with preterm prelabor rupture of membranes