Cervical microbiota in women with preterm prelabor rupture of membranes
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25993616
PubMed Central
PMC4439143
DOI
10.1371/journal.pone.0126884
PII: PONE-D-14-46332
Knihovny.cz E-zdroje
- MeSH
- amnion mikrobiologie MeSH
- cervix uteri mikrobiologie patologie MeSH
- chorioamnionitida mikrobiologie MeSH
- demografie MeSH
- dospělí MeSH
- druhová specificita MeSH
- interleukin-6 metabolismus MeSH
- lidé MeSH
- mikrobiota * MeSH
- mladý dospělý MeSH
- novorozenec MeSH
- plodová voda metabolismus MeSH
- předčasná porodní činnost mikrobiologie MeSH
- předčasný odtok plodové vody mikrobiologie MeSH
- těhotenství MeSH
- tělesné tekutiny mikrobiologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- IL6 protein, human MeSH Prohlížeč
- interleukin-6 MeSH
OBJECTIVE: To analyze the cervical microbiota in women with preterm prelabor rupture of membranes (PPROM) by pyrosequencing and to document associations between cervical microbiota, cervical inflammatory response, microbial invasion of the amniotic cavity (MIAC), histological chorioamnionitis, and intraamniotic infection (IAI). STUDY DESIGN: Sixty-one women with singleton pregnancies complicated by PPROM were included in the study. Specimens of cervical and amniotic fluid were collected on admission. The cervical microbiota was assessed by 16S rRNA gene sequencing by pyrosequencing. Interleukin (IL)-6 concentration in the cervical fluid and amniotic fluid was measured by ELISA and lateral flow immunoassay, respectively. RESULTS: Four bacterial community state types [CST I (Lactobacillus crispatus dominated), CST III (Lactobacillus iners dominated), CST IV-A (non-Lactobacillus bacteria dominated), and CST IV-B (Gardnerella vaginalis and Sneathia sanguinegens dominated)] were observed in the cervical microbiota of women with PPROM. Cervical fluid IL-6 concentrations differed between CSTs (CST I = 145 pg/mL, CST III = 166 pg/mL, CST IV-A = 420 pg/mL, and CST IV-B = 322 pg/mL; p = 0.004). There were also differences in the rates of MIAC, of both MIAC and histological chorioamnionitis, and of IAI among CSTs. No difference in the rate of histological chorioamnionitis was found among CSTs. CONCLUSIONS: The cervical microbiota in PPROM women in this study was characterized by four CSTs. The presence of non-Lactobacillus CSTs was associated with a strong cervical inflammatory response and higher rates of MIAC, both MIAC and histological chorioamnionitis, and IAI representing a PPROM subtype with pronounced inflammation. CST I represents the dominant type of PPROM with a low rate of MIAC, IAI, and the combination of MIAC and histological chorioamnionitis.
Zobrazit více v PubMed
Mercer BM (2005) Preterm premature rupture of the membranes: current approaches to evaluation and management. Obstet Gynecol Clin North Am 32: 411–428. PubMed
Waters TP, Mercer B (2011) Preterm PROM: prediction, prevention, principles. Clin Obstet Gynecol 54: 307–312. 10.1097/GRF.0b013e318217d4d3 PubMed DOI
Chang A, Zhang Z, Zhang L, Gao Y, Zhang L, Jia L, et al. (2013) Proteomic analysis of preterm premature rupture of membranes in placental tissue. Arch Gynecol Obstet 288: 775–784. 10.1007/s00404-013-2837-5 PubMed DOI
Menon R, Boldogh I, Hawkins HK, Woodson M, Polettini J, Syed TA, et al. (2014) Histological evidence of oxidative stress and premature senescence in preterm premature rupture of the human fetal membranes recapitulated in vitro. Am J Pathol 184: 1740–1751. 10.1016/j.ajpath.2014.02.011 PubMed DOI
Menon R, Polettini J, Syed TA, Saade GR, Boldogh I (2014) Expression of 8-oxoguanine Glycosylase in Human Fetal Membranes. Am J Reprod Immunol 72: 75–84. 10.1111/aji.12220 PubMed DOI
Menon R, Yu J, Basanta-Henry P, Brou L, Berga SL, Fortunato SJ, et al. (2012) Short fetal leukocyte telomere length and preterm prelabor rupture of the membranes. PLoS One 7: e31136 10.1371/journal.pone.0031136 PubMed DOI PMC
Kacerovsky M, Celec P, Vlkova B, Skogstrand K, Hougaard DM, Cobo T, et al. (2013) Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria. PLoS One 8: e60399 10.1371/journal.pone.0060399 PubMed DOI PMC
Kacerovsky M, Musilova I, Hornychova H, Kutova R, Pliskova L, Kostal M, et al. (2014) Bedside assessment of amniotic fluid interleukin-6 in preterm prelabor rupture of membranes. Am J Obstet Gynecol. 10.1016/j.ajog.2014.03.069 PubMed DOI
Kacerovsky M, Pliskova L, Bolehovska R, Musilova I, Hornychova H, Tambor V, et al. (2011) The microbial load with genital mycoplasmas correlates with the degree of histologic chorioamnionitis in preterm PROM. Am J Obstet Gynecol 205: 213 e211-217. 10.1016/j.ajog.2011.04.028 PubMed DOI
Kacerovsky M, Pliskova L, Bolehovska R, Skogstrand K, Hougaard DM, Tsiartas P, et al. (2012) The impact of the microbial load of genital mycoplasmas and gestational age on the intensity of intraamniotic inflammation. Am J Obstet Gynecol 206: 342 e341-348. 10.1016/j.ajog.2012.01.004 PubMed DOI
Fortner KB, Grotegut CA, Ransom CE, Bentley RC, Feng L, Lan L, et al. (2014) Bacteria localization and chorion thinning among preterm premature rupture of membranes. PLoS One 9: e83338 10.1371/journal.pone.0083338 PubMed DOI PMC
Racicot K, Cardenas I, Wunsche V, Aldo P, Guller S, Means RE, et al. (2013) Viral infection of the pregnant cervix predisposes to ascending bacterial infection. J Immunol 191: 934–941. 10.4049/jimmunol.1300661 PubMed DOI PMC
Gotsch F, Romero R, Kusanovic JP, Mazaki-Tovi S, Pineles BL, Erez O, et al. (2007) The fetal inflammatory response syndrome. Clin Obstet Gynecol 50: 652–683. PubMed
Gomez R, Romero R, Ghezzi F, Yoon BH, Mazor M, Berry SM (1998) The fetal inflammatory response syndrome. Am J Obstet Gynecol 179: 194–202. PubMed
Chow AW, Bartlett KH (1989) Sequential assessment of vaginal microflora in healthy women randomly assigned to tampon or napkin use. Rev Infect Dis 11 Suppl 1: S68–73; discussion S73-64. PubMed
Johnson SR, Petzold CR, Galask RP (1985) Qualitative and quantitative changes of the vaginal microbial flora during the menstrual cycle. Am J Reprod Immunol Microbiol 9: 1–5. PubMed
Larsen B, Monif GR (2001) Understanding the bacterial flora of the female genital tract. Clin Infect Dis 32: e69–77. PubMed
Marrazzo JM, Koutsky LA, Eschenbach DA, Agnew K, Stine K, Hillier SE (2002) Characterization of vaginal flora and bacterial vaginosis in women who have sex with women. J Infect Dis 185: 1307–1313. PubMed
Lamont RF, Sobel JD, Akins RA, Hassan SS, Chaiworapongsa T, Kusanovic JP, et al. (2011) The vaginal microbiome: new information about genital tract flora using molecular based techniques. BJOG 118: 533–549. 10.1111/j.1471-0528.2010.02840.x PubMed DOI PMC
Gajer P, Brotman RM, Bai G, Sakamoto J, Schutte UM, Zhong X, et al. (2012) Temporal dynamics of the human vaginal microbiota. Sci Transl Med 4: 132ra152. PubMed PMC
Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. (2011) Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 108 Suppl 1: 4680–4687. 10.1073/pnas.1002611107 PubMed DOI PMC
Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Nikita L, et al. (2014) The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome 2: 4 10.1186/2049-2618-2-4 PubMed DOI PMC
Smith BC, McAndrew T, Chen Z, Harari A, Barris DM, Viswanathan S, et al. (2012) The cervical microbiome over 7 years and a comparison of methodologies for its characterization. PLoS One 7: e40425 10.1371/journal.pone.0040425 PubMed DOI PMC
Hyman RW, Fukushima M, Jiang H, Fung E, Rand L, Johnson B, et al. (2014) Diversity of the vaginal microbiome correlates with preterm birth. Reprod Sci 21: 32–40. 10.1177/1933719113488838 PubMed DOI PMC
Aagaard K, Riehle K, Ma J, Segata N, Mistretta TA, Coarfa C, et al. (2012) A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One 7: e36466 10.1371/journal.pone.0036466 PubMed DOI PMC
Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Bieda J, et al. (2014) The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term. Microbiome 2: 18 10.1186/2049-2618-2-18 PubMed DOI PMC
Baldrian P, Kolarik M, Stursova M, Kopecky J, Valaskova V, Vetrovsky T, et al. (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6: 248–258. 10.1038/ismej.2011.95 PubMed DOI PMC
Parameswaran P, Jalili R, Tao L, Shokralla S, Gharizadeh B, Ronaghi M, et al. (2007) A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing. Nucleic Acids Res 35: e130 PubMed PMC
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537–7541. 10.1128/AEM.01541-09 PubMed DOI PMC
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460–2461. 10.1093/bioinformatics/btq461 PubMed DOI
Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33: 511–518. PubMed PMC
Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261–5267. PubMed PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410. PubMed
Greisen K, Loeffelholz M, Purohit A, Leong D (1994) PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol 32: 335–351. PubMed PMC
Salafia CM, Weigl C, Silberman L (1989) The prevalence and distribution of acute placental inflammation in uncomplicated term pregnancies. Obstet Gynecol 73: 383–389. PubMed
Lin J (1991) Divergence measures based on the shannon entropy. IEEE Trans Inf Theory 37: 6.
Ward JH (1963) Hierarchical Grouping to Optimize an Objective Function. J Am Statist Assoc 58: 8.
Team RC (2014) R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, Austria.
Kacerovsky M, Musilova I, Jacobsson B, Drahosova M, Hornychova H, Janku P, et al. (2014) Cervical fluid IL-6 and IL-8 levels in pregnancies complicated by preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. PubMed
Fredricks DN, Fiedler TL, Marrazzo JM (2005) Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med 353: 1899–1911. PubMed
Eade CR, Diaz C, Wood MP, Anastos K, Patterson BK, Gupta P, et al. (2012) Identification and characterization of bacterial vaginosis-associated pathogens using a comprehensive cervical-vaginal epithelial coculture assay. PLoS One 7: e50106 10.1371/journal.pone.0050106 PubMed DOI PMC
Mendz GL, Kaakoush NO, Quinlivan JA (2013) Bacterial aetiological agents of intra-amniotic infections and preterm birth in pregnant women. Front Cell Infect Microbiol 3: 58 10.3389/fcimb.2013.00058 PubMed DOI PMC
Markenson GR, Martin RK, Tillotson-Criss M, Foley KS, Stewart RS Jr., Yancey M (1997) The use of the polymerase chain reaction to detect bacteria in amniotic fluid in pregnancies complicated by preterm labor. Am J Obstet Gynecol 177: 1471–1477. PubMed
DiGiulio DB, Romero R, Amogan HP, Kusanovic JP, Bik EM, Gotsch F, et al. (2008) Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One 3: e3056 10.1371/journal.pone.0003056 PubMed DOI PMC
DiGiulio DB, Romero R, Kusanovic JP, Gomez R, Kim CJ, Seok KS, et al. (2010) Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol 64: 38–57. 10.1111/j.1600-0897.2010.00830.x PubMed DOI PMC
Zhou X, Brotman RM, Gajer P, Abdo Z, Schuette U, Ma S, et al. (2010) Recent advances in understanding the microbiology of the female reproductive tract and the causes of premature birth. Infect Dis Obstet Gynecol 2010: 737425 10.1155/2010/737425 PubMed DOI PMC
Shipitsyna E, Roos A, Datcu R, Hallen A, Fredlund H, Jensen JS, et al. (2013) Composition of the vaginal microbiota in women of reproductive age—sensitive and specific molecular diagnosis of bacterial vaginosis is possible? PLoS One 8: e60670 10.1371/journal.pone.0060670 PubMed DOI PMC
King CC, Jamieson DJ, Wiener J, Cu-Uvin S, Klein RS, Rompalo AM, et al. (2011) Bacterial vaginosis and the natural history of human papillomavirus. Infect Dis Obstet Gynecol 2011: 319460 10.1155/2011/319460 PubMed DOI PMC
Gao W, Weng J, Gao Y, Chen X (2013) Comparison of the vaginal microbiota diversity of women with and without human papillomavirus infection: a cross-sectional study. BMC Infect Dis 13: 271 10.1186/1471-2334-13-271 PubMed DOI PMC
Cobo T, Kacerovsky M, Palacio M, Hornychova H, Hougaard DM, Skogstrand K, et al. (2012) Intra-amniotic inflammatory response in subgroups of women with preterm prelabor rupture of the membranes. PLoS One 7: e43677 10.1371/journal.pone.0043677 PubMed DOI PMC
Kacerovsky M, Cobo T, Andrys C, Musilova I, Drahosova M, Hornychova H, et al. (2013) The fetal inflammatory response in subgroups of women with preterm prelabor rupture of the membranes. J Matern Fetal Neonatal Med 26: 795–801. 10.3109/14767058.2013.765404 PubMed DOI
Ghartey JP, Smith BC, Chen Z, Buckley N, Lo Y, Ratner AJ, et al. (2014) Lactobacillus crispatus Dominant Vaginal Microbiome Is Associated with Inhibitory Activity of Female Genital Tract Secretions against Escherichia coli. PLoS One 9: e96659 10.1371/journal.pone.0096659 PubMed DOI PMC
Thadepalli H, Appleman MD, Maidman JE, Arce JJ, Davidson EC Jr. (1977) Antimicrobial effect of amniotic fluid against anaerobic bacteria. Am J Obstet Gynecol 127: 250–254. PubMed
Kim JY, Park SC, Lee JK, Choi SJ, Hahm KS, Park Y (2012) Novel antibacterial activity of beta(2)-microglobulin in human amniotic fluid. PLoS One 7: e47642 10.1371/journal.pone.0047642 PubMed DOI PMC
Schlievert P, Johnson W, Galask RP (1977) Amniotic fluid antibacterial mechanisms: newer concepts. Semin Perinatol 1: 59–70. PubMed
Oka K, Hagio Y, Tetsuoh M, Kawano K, Hamada T, Kato T (1987) The effect of transferrin and lysozyme on antibacterial activity of amniotic fluid. Biol Res Pregnancy Perinatol 8: 1–6. PubMed
Michaels JE, Dasari S, Pereira L, Reddy AP, Lapidus JA, Lu X, et al. (2007) Comprehensive proteomic analysis of the human amniotic fluid proteome: gestational age-dependent changes. J Proteome Res 6: 1277–1285. PubMed