Concentrations of microcystins in tissues of several fish species from freshwater reservoirs and ponds
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- chemické látky znečišťující vodu metabolismus MeSH
- játra metabolismus MeSH
- mikrocystiny metabolismus MeSH
- monitorování životního prostředí * MeSH
- ryby metabolismus MeSH
- sladká voda chemie MeSH
- svaly metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- chemické látky znečišťující vodu MeSH
- mikrocystiny MeSH
The aim of this study is to summarise the determination of concentrations of microcystins (MCs) in muscle and liver of freshwater fish species caught in stagnant waters of the Czech Republic. Within the years 2007-2009, 351 muscle samples and 291 liver samples of 16 freshwater fish species derived from four fishponds, and four water reservoirs were analysed. MCs were detected in 53 liver samples. The highest concentrations of microcystins were determined in liver samples of carnivorous fish species; 50.3 ng/g of fresh weight (FW) in perch (Perca fluviatilis) and 22.7 ng/g FW in pikeperch (Sander lucioperca). MCs in liver were detected in other five fish species; asp (Aspius aspius), pike (Esox lucius), common carp (Cyprinus carpio), grass carp (Ctenopharyngodon idella) and European eel (Anguilla anguilla). Concentrations of MCs in liver of nine fish species (European bream, whitefish, tench, silver carp, European catfish, roach, chub, crucian carp and rudd) were below the detection limit of 1.2-5.4 ng/g FW for different MC congeners. However, the concentrations of MCs in all muscle samples were below the detection limit. The assessment of MCs concentrations might be influenced by the detection method used. Due to the concentrations of MCs being below the detection limit in muscle samples of all fish species analysed, it seems that there might be a low potential threat for human health in case of fish muscle consumption.
Zobrazit více v PubMed
Biochim Biophys Acta. 1990 Jun 11;1025(1):60-6 PubMed
Toxicon. 2003 Apr;41(5):613-20 PubMed
Toxicol Appl Pharmacol. 2000 Apr 1;164(1):73-81 PubMed
Environ Toxicol Chem. 2007 Dec;26(12):2687-93 PubMed
Toxicon. 2001 Jul;39(7):1077-85 PubMed
Anal Bioanal Chem. 2006 Aug;385(8):1545-51 PubMed
Analyst. 1994 Jul;119(7):1525-30 PubMed
Environ Toxicol Chem. 2006 Jan;25(1):72-86 PubMed
Environ Sci Technol. 2011 Jul 1;45(13):5806-11 PubMed
Toxicon. 2007 Apr;49(5):646-52 PubMed
Environ Monit Assess. 2012 Jan;184(2):939-49 PubMed
J Zhejiang Univ Sci B. 2007 Feb;8(2):116-20 PubMed
Anal Bioanal Chem. 2010 Oct;398(3):1231-7 PubMed
Environ Toxicol. 2005 Jun;20(3):293-300 PubMed
Environ Pollut. 2007 May;147(1):150-7 PubMed
Environ Monit Assess. 2008 Feb;137(1-3):185-95 PubMed
Anal Bioanal Chem. 2011 Nov;401(8):2617-30 PubMed
Environ Pollut. 2007 Nov;150(1):177-92 PubMed
Environ Toxicol. 2005 Aug;20(4):449-58 PubMed
Environ Toxicol. 2001;16(6):483-8 PubMed
Microb Ecol. 2005 May;49(4):487-500 PubMed
Environ Pollut. 2005 Apr;134(3):423-30 PubMed
Aquat Toxicol. 2006 Jun 10;78(1):32-41 PubMed
FEBS Lett. 1995 Sep 11;371(3):236-40 PubMed
Environ Toxicol. 2003 Apr;18(2):137-41 PubMed
Toxicon. 2003 Sep;42(3):289-95 PubMed
Aquat Toxicol. 2004 Oct 18;70(1):1-10 PubMed
Environ Toxicol. 2006 Jun;21(3):205-22 PubMed
Toxicol Sci. 2009 Mar;108(1):81-9 PubMed
Environ Pollut. 2004;127(3):431-9 PubMed