Apoferritin modified magnetic particles as doxorubicin carriers for anticancer drug delivery

. 2013 Jun 27 ; 14 (7) : 13391-402. [epub] 20130627

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23807501

Magnetic particle mediated transport in combination with nanomaterial based drug carrier has a great potential for targeted cancer therapy. In this study, doxorubicin encapsulation into the apoferritin and its conjugation with magnetic particles was investigated by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). The quantification of encapsulated doxorubicin was performed by fluorescence spectroscopy and compared to CE-LIF. Moreover, the significant enhancement of the doxorubicin signal was observed by addition of methanol into the sample solution.

Zobrazit více v PubMed

El-Okr M.M., Salem M.A., Salim M.S., El-Okr R.M., Ashoush M., Talaat H.M. Synthesis of cobalt ferrite nano-particles and their magnetic characterization. J. Magn. Magn. Mater. 2011;323:920–926.

Gupta A.K., Naregalkar R.R., Vaidya V.D., Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine. 2007;2:23–39. PubMed

Nakamura K., Ueda K., Tomitaka A., Yamada T., Takemura Y. Self-heating temperature and AC hysteresis of magnetic iron oxide nanoparticles and their dependence on sary particle size. IEEE Trans. Magn. 2013;49:240–243.

Nejati K., Zabihi R. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chem. Cent. J. 2012;6:1–6. PubMed PMC

Thorek D.L.J., Tsourkas A. Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials. 2008;29:3583–3590. PubMed PMC

Tran N., Webster T.J. Magnetic nanoparticles: Biomedical applications and challenges. J. Mater. Chem. 2010;20:8760–8767.

Nandori I., Racz J. Magnetic particle hyperthermia: Power losses under circularly polarized field in anisotropic nanoparticles. Phys. Rev. E. 2012;86:1–8. PubMed

Wu A.G., Ou P., Zeng L.Y. Biomedical applications of magnetic nanoparticles. Nano. 2010;5:245–270.

Schlorf T., Meincke M., Kossel E., Gluer C.C., Jansen O., Mentlein R. Biological properties of iron oxide nanoparticles for cellular and molecular magnetic resonance imaging. Int. J. Mol. Sci. 2011;12:12–23. PubMed PMC

Nune S.K., Gunda P., Thallapally P.K., Lin Y.Y., Forrest M.L., Berkland C.J. Nanoparticles for biomedical imaging. Expert Opin. Drug Deliv. 2009;6:1175–1194. PubMed PMC

Mahmoudi M., Simchi A., Imani M. Recent advances in surface engineering of superparamagnetic iron oxide nanoparticles for biomedical applications. J. Iran Chem. Soc. 2010;7:S1–S27.

Peng X.H., Qian X.M., Mao H., Wang A.Y., Chen Z., Nie S.M., Shin D.M. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int. J. Nanomed. 2008;3:311–321. PubMed PMC

Liu D., Zhu G.L., Tang W.Q., Yang J.Q., Guo H.Y. PCR and magnetic bead-mediated target capture for the isolation of short interspersed nucleotide elements in fishes. Int. J. Mol. Sci. 2012;13:2048–2062. PubMed PMC

Khandare J., Minko T. Polymer-drug conjugates: Progress in polymeric prodrugs. Prog. Polym. Sci. 2006;31:359–397.

Braconnot S., Eissa M.M., Elaissari A. Morphology control of magnetic latex particles prepared from oil in water ferrofluid emulsion. Colloid Polym. Sci. 2013;291:193–203.

Ding G.B., Guo Y., Lv Y.Y., Liu X.F., Xu L., Zhang X.Z. A double-targeted magnetic nanocarrier with potential application in hydrophobic drug delivery. Colloid Surf. B. 2012;91:68–76. PubMed

Eberbeck D., Dennis C.L., Huls N.F., Krycka K.L., Gruttner C., Westphal F. Multicore magnetic nanoparticles for magnetic particle imaging. IEEE Trans. Magn. 2013;49:269–274.

Freund J.B., Shapiro B. Transport of particles by magnetic forces and cellular blood flow in a model microvessel. Phys. Fluids. 2012;24:1–12.

Mok H., Zhang M.Q. Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics. Expert Opin. Drug Deliv. 2013;10:73–87. PubMed PMC

Lubbe A.S., Bergemann C., Riess H., Schriever F., Reichardt P., Possinger K., Matthias M., Dorken B., Herrmann F., Gurtler R., et al. Clinical experiences with magnetic drag targeting: A phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 1996;56:4686–4693. PubMed

Silva A.C., Santos D., Ferreira D., Lopes C.M. Lipid-based nanocarriers as an alternative for oral delivery of poorly water-soluble drugs: Peroral and mucosal routes. Curr. Med. Chem. 2012;19:4495–4510. PubMed

Elzoghby A.O., Samy W.M., Elgindy N.A. Protein-based nanocarriers as promising drug and gene delivery systems. J. Control. Release. 2012;161:38–49. PubMed

Kilic M.A., Ozlu E., Calis S. A novel protein-based anticancer drug encapsulating nanosphere: Apoferritin-doxorubicin complex. J. Biomed.Nanotechnol. 2012;8:508–514. PubMed

Banerjee S.S., Chen D.H. A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release. Nanotechnology. 2009;20:1–10. PubMed

Li L., ten Hagen T.L.M., Schipper D., Wijnberg T.M., van Rhoon G.C., Eggermont A.M.M., Lindner L.H., Koning G.A. Triggered content release from optimized stealth thermosensitive liposomes using mild hyperthermia. J. Control. Release. 2010;143:274–279. PubMed

Xu X.W., Flores J.D., McCormick C.L. Reversible imine shell cross-linked micelles from aqueous raft-synthesized thermoresponsive triblock copolymers as potential nanocarriers for “pH-Triggered” drug release. Macromolecules. 2011;44:1327–1334.

Suzumoto Y., Okuda M., Yamashita I. Fabrication of zinc oxide semiconductor nanoparticles in the apoferritin cavity. Cryst. Growth Des. 2012;12:4130–4134.

Wu F., Jin T. Polymer-based sustained-release dosage forms for protein drugs, challenges, and recent advances. AAPS PharmSciTech. 2008;9:1218–1229. PubMed PMC

Li X.H., Zhang Y.H., Yan R.H., Jia W.X., Yuan M.L., Deng X.M., Huang Z.T. Influence of process parameters on the protein stability encapsulated in poly-dl-lactide-poly(ethylene glycol) microspheres. J. Control Release. 2000;68:41–52. PubMed

Sanchez A., Villamayor B., Guo Y.Y., McIver J., Alonso M.J. Formulation strategies for the stabilization of tetanus toroid in poly(lactide-co-glycolide) microspheres. Int. J. Pharm. 1999;185:255–266. PubMed

Gander B., Johansen P., NamTran H., Merkle H.P. Thermodynamic approach to protein microencapsulation into poly(d,l-lactide) by spray drying. Int. J. Pharm. 1996;129:51–61.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...