Direct tandem mass spectrometric profiling of sulfatides in dry urinary samples for screening of metachromatic leukodystrophy

. 2013 Oct 21 ; 425 () : 153-9. [epub] 20130706

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23838369

Grantová podpora
R01 DK067859 NIDDK NIH HHS - United States

Odkazy

PubMed 23838369
PubMed Central PMC3806293
DOI 10.1016/j.cca.2013.06.027
PII: S0009-8981(13)00268-4
Knihovny.cz E-zdroje

BACKGROUND: Prediagnostic steps in suspected metachromatic leukodystrophy (MLD) rely on clinical chemical methods other than enzyme assays. We report a new diagnostic method which evaluates changes in the spectrum of molecular types of sulfatides (3-O-sulfogalactosyl ceramides) in MLD urine. METHODS: The procedure allows isolation of urinary sulfatides by solid-phase extraction on DEAE-cellulose membranes, transportation of a dry membrane followed by elution and tandem mass spectrometry (MS/MS) analysis in the clinical laboratory. Major sulfatide isoforms are normalized to the least variable component of the spectrum, which is the indigenous C18:0 isoform. This procedure does not require the use of specific internal standards and minimizes errors caused by sample preparation and measurement. RESULTS: Urinary sulfatides were analyzed in a set of 21 samples from patients affected by sulfatidosis. The combined abundance of the five most elevated isoforms, C22:0, C22:0-OH, C24:0, C24:1-OH, and C24:0-OH sulfatides, was found to give the greatest distinction between MLD-affected patients and a control group. CONCLUSIONS: The method avoids transportation of liquid urine samples and generates stable membrane-bound sulfatide samples that can be stored at ambient temperature. MS/MS sulfatide profiling targeted on the most MLD-representative isoforms is simple with robust results and is suitable for screening.

Zobrazit více v PubMed

Sandhoff K, Kolter T, Harzer K. Sphingolipid Activator Proteins. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill; 2001. pp. 3371–3388.

von Figura K, Gieselmann V, Jaeken J. Metachromatic Leukodystrophy. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill; 2001. pp. 3695–3724.

Batzios SP, Zafeiriou DI. Developing treatment options for metachromatic leukodystrophy. Mol Genet Metab. 2012;105:56–63. PubMed

Biffi A, Lucchini G, Rovelli A, Sessa M. Metachromatic leukodystrophy: an overview of current and prospective treatments. Bone Marrow Transplant. 2008;42(2):S2–6. PubMed

Matzner U, Lullmann-Rauch R, Stroobants S, et al. Enzyme replacement improves ataxic gait and central nervous system histopathology in a mouse model of metachromatic leukodystrophy. Mol Ther. 2009;17:600–606. PubMed PMC

Sevin C, Aubourg P, Cartier N. Enzyme, cell and gene-based therapies for metachromatic leukodystrophy. J Inherit Metab Dis. 2007;30:175–183. PubMed

Stroobants S, Gerlach D, Matthes F, et al. Intracerebroventricular enzyme infusion corrects central nervous system pathology and dysfunction in a mouse model of metachromatic leukodystrophy. Hum Mol Genet. 2011;20:2760–2769. PubMed

Baum H, Dodgson KS, Spencer B. The assay of arylsulphatases A and B in human urine. Clin Chim Acta. 1959;4:453–455. PubMed

Christomanou H, Sandhoff K. A sensitive fluorescence assay for the simultaneous and separate determination of arylsulphatases A and B. Clin Chim Acta. 1977;79:527–531. PubMed

Lee-Vaupel M, Conzelmann E. A simple chromogenic assay for arylsulfatase A. Clin Chim Acta. 1987;164:171–180. PubMed

Suzuki K. Enzymatic diagnosis of sphingolipidoses. Methods Enzymol. 1987;138:727–762. PubMed

Hohenschutz C, Eich P, Friedl W, Waheed A, Conzelmann E, Propping P. Pseudodeficiency of arylsulfatase A: a common genetic polymorphism with possible disease implications. Hum Genet. 1989;82:45–48. PubMed

Gieselmann V, Polten A, Kreysing J, von Figura K. Arylsulfatase A pseudodeficiency: loss of a polyadenylylation signal and N-glycosylation site. Proc Natl Acad Sci U S A. 1989;86:9436–9440. PubMed PMC

Dubois G, Harzer K, Baumann N. Very low arylsulfatase A and cerebroside sulfatase activities in leukocytes of healthy members of metachromatic leukodystrophy family. Am J Hum Genet. 1977;29:191–194. PubMed PMC

Herz B, Bach G. Arylsulfatase A in pseudodeficiency. Hum Genet. 1984;66:147–150. PubMed

Chang PL, Davidson RG. Pseudo arylsulfatase-A deficiency in healthy individuals: genetic and biochemical relationship to metachromatic leukodystrophy. Proc Natl Acad Sci U S A. 1983;80:7323–7327. PubMed PMC

Kihara H, Ho CK, Fluharty AL, Tsay KK, Hartlage PL. Prenatal diagnosis of metachromatic leukodystrophy in a family with pseudo arylsulfatase A deficiency by the cerebroside sulfate loading test. Pediatr Res. 1980;14:224–227. PubMed

Dayan AD. Dichroism of cresyl violet-stained cerebroside sulfate (“sulfatide”) J Histochem Cytochem. 1967;15:421–422. PubMed

Suzuki K, Chen G. Metachromatic leucodystrophy: isolation and chemical analysis of metachromatic granules. Science. 1966;151:1231–1233. PubMed

Philippart M, Sarlieve L, Meurant C, Mechler L. Human urinary sulfatides in patients with sulfatidosis (metachromatic leukodystrophy) J Lipid Res. 1971;12:434–441. PubMed

Berna L, Asfaw B, Conzelmann E, Cerny B, Ledvinova J. Determination of urinary sulfatides and other lipids by combination of reversed-phase and thin-layer chromatographies. Anal Biochem. 1999;269:304–311. PubMed

Natowicz MR, Prence EM, Chaturvedi P, Newburg DS. Urine sulfatides and the diagnosis of metachromatic leukodystrophy. Clin Chem. 1996;42:232–238. PubMed

Sugiyama E, Hara A, Uemura K. A quantitative analysis of serum sulfatide by matrix-assisted laser desorption ionization time-of-flight mass spectrometry with delayed ion extraction. Anal Biochem. 1999;274:90–97. PubMed

Tan MA, Fuller M, Zabidi-Hussin ZA, Hopwood JJ, Meikle PJ. Biochemical profiling to predict disease severity in metachromatic leukodystrophy. Mol Genet Metab. 2010;99:142–148. PubMed

Whitfield PD, Sharp PC, Johnson DW, Nelson P, Meikle PJ. Characterization of urinary sulfatides in metachromatic leukodystrophy using electrospray ionization-tandem mass spectrometry. Mol Genet Metab. 2001;73:30–37. PubMed

Norris AJ, Whitelegge JP, Yaghoubian A, et al. A novel mass spectrometric assay for the cerebroside sulfate activator protein (saposin B) and arylsulfatase A. J Lipid Res. 2005;46:2254–2264. PubMed

Kuchar L, Ledvinova J, Hrebicek M, et al. Prosaposin deficiency and saposin B deficiency (activator-deficient metachromatic leukodystrophy): report on two patients detected by analysis of urinary sphingolipids and carrying novel PSAP gene mutations. Am J Med Genet A. 2009;149A:613–621. PubMed PMC

Postle AD. Phospholipid Profiling. In: Griffiths WJ, editor. Metabolomics, Metabonomics and Metabolite Profiling. Cambridge: Royal Society of Chemistry; 2008. pp. 116–133.

Kuchar L, Rotkova J, Asfaw B, et al. Semisynthesis of C17:0 isoforms of sulphatide and glucosylceramide using immobilised sphingolipid ceramide N-deacylase for applicationin analytical mass spectrometry. Rapid Commun Mass Spectrom. 2010;24:2393–2399. PubMed

Taylor PJ. Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin Biochem. 2005;38:328–334. PubMed

Micova K, Friedecky D, Faber E, Polynkova A, Adam T. Flow injection analysis vs. ultra high performance liquid chromatography coupled with tandem mass spectrometry fordetermination of imatinib in human plasma. Clin Chim Acta. 2010;411:1957–1962. PubMed

Rockville MD. FDA Guidance for Industry: Bioanalytical Method Validation: US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. 2001.

Hulkova H, Cervenkova M, Ledvinova J, et al. A novel mutation in the coding region of the prosaposin gene leads to a complete deficiency of prosaposin and saposins, and is associated with a complex sphingolipidosis dominated by lactosylceramide accumulation. Hum Mol Genet. 2001;10:927–940. PubMed

Natomi H, Sugano K, Iwamori M, Takaku F, Nagai Y. Region-specific distribution of glycosphingolipids in the rabbit gastrointestinal tract: preferential enrichment of sulfoglycolipids in the mucosal regions exposed to acid. Biochim Biophys Acta. 1988;961:213–222. PubMed

Turecek F, Scott CR, Gelb MH. Tandem mass spectrometry in the detection of inborn errors of metabolism for newborn screening. Methods Mol Biol. 2007;359:143–157. PubMed

Paschke E, Fauler G, Winkler H, et al. Urinary total globotriaosylceramide and isoforms to identify women with Fabry disease: a diagnostic test study. Am J Kidney Dis. 2011;57:673–681. PubMed

Ben-David O, Pewzner-Jung Y, Brenner O, et al. Encephalopathy caused by ablation of very long acyl chain ceramide synthesis may be largely due to reduced galactosylceramide levels. J Biol Chem. 2011;286:30022–30033. PubMed PMC

Laviad EL, Albee L, Pankova-Kholmyansky I, et al. Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J Biol Chem. 2008;283:5677–5684. PubMed

De Livera AM, Dias DA, De Souza D, et al. Normalizing and integrating metabolomics data. Anal Chem. 2012;84:10768–10776. PubMed

Forni S, Fu X, Schiffmann R, Sweetman L. Falsely elevated urinary Gb3 (globotriaosylceramide, CTH, GL3) Mol Genet Metab. 2009;97:91. PubMed

Kuchar L, Asfaw B, Ledvinova J. Tandem Mass Spectrometry of Sphingolipids: Application in Metabolic Studies and Diagnosis of Inherited Disorders of Sphingolipid Metabolism. In: Prasain JK, editor. Tandem Mass Spectrometry - Applications and Principles. Rijeka: InTech; 2012. pp. 739–768.

Chatterjee S, Gupta P, Pyeritz RE, Kwiterovich PO., Jr Immunohistochemical localization of glycosphingolipid in urinary renal tubular cells in Fabry's disease. Am J Clin Pathol. 1984;82:24–28. PubMed

Warnock DG, Valbuena C, West M, Oliveira JP. Renal Manifestation of Fabry Disease. In: Elstein D, Altarescu G, Beck M, editors. Fabry Disease. Dordrecht: Springer Science+Business Media B.V.; 2010. pp. 211–243.

Iwamori M, Moser HW. Above-normal urinary excretion of urinary ceramides in Farber's disease, and characterization of their components by high-performance liquid chromatography. Clin Chem. 1975;21:725–729. PubMed

Chatterjee S, Castiglione E, Kwiterovich PO, Jr, Hoeg JM, Brewer HB. Evaluation of urinary cells in acid cholesteryl ester hydrolase deficiency. Clin Genet. 1986;29:360–368. PubMed

Nguyen GK, Smith R. Repair renal tubular cells: a potential false-positive diagnosis in urine cytology. Diagn Cytopathol. 2004;31:342–346. PubMed

Levy M, Futerman AH. Mammalian ceramide synthases. IUBMB Life. 2010;62:347–356. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...