Hidden diversity in Senegalese bats and associated findings in the systematics of the family Vespertilionidae
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
23938084
PubMed Central
PMC3751436
DOI
10.1186/1742-9994-10-48
PII: 1742-9994-10-48
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: The Vespertilionidae is the largest family of bats, characterized by high occurrence of morphologically convergent groups, which impedes the study of their evolutionary history. The situation is even more complicated in the tropics, where certain regions remain under-sampled. RESULTS: Two hundred and thirteen vespertilionid bats from Senegal (West Africa) were studied with the use of non-differentially stained karyotypes and multi-locus sequence data analysed with maximum likelihood and Bayesian methods. These bats were identified as 10 different taxa, five of which were distinctive from their nominate species (Pipistrellus hesperidus, Nycticeinops schlieffenii, Scotoecus hirundo, Neoromicia nana and N. somalica), based on both karyotypes and molecular data. These five cryptic taxa are unrelated, suggesting that these West African populations have long been isolated from other African regions. Additionally, we phylogenetically analysed 166 vespertilionid taxa from localities worldwide using GenBank data (some 80% of the genera of the family) and 14 representatives of closely related groups, together with our Senegalese specimens. The systematic position of several taxa differed from previous studies and the tribes Pipistrellini and Vespertilionini were redefined. The African Pipistrellus rueppellii was basal to the Pipistrellus/Nyctalus clade and the Oriental species Glischropus tylopus was basal to the East Asian pipistrelles within the tribe Pipistrellini. The African genus Neoromicia was confirmed to be diphyletic. Based on GenBank data, Eptesicus was polyphyletic, with the Asian E. nasutus and E. dimissus both supported as phylogenetically distinct from the Eptesicus clade. The subfamily Scotophilinae was confirmed as one of the basal branches of Vespertilionidae. CONCLUSIONS: New taxa and new systematic arrangements show that there is still much to resolve in the vespertilionids and that West Africa is a biogeographic hotspot with more diversity to be discovered.
Zobrazit více v PubMed
Simmons NB. In: Mammal species of the world. A taxonomic and geographic reference. 3. Wilson DE, Reeder DM, editor. Baltimore: Johns Hopkins University Press; 2005. Order Chiroptera; pp. 312–529.
Koopman KF. In: Handbook of zoology. Volume 8, Mammalia (60) Niethammer J, Schliemann H, Starck D, editor. Berlin: Walter de Gruyter Press; 1994. Chiroptera: systematics; pp. 1–217.
Simmons NB, Geisler JH. Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull Am Mus Nat Hist. 1998;235:1–182.
Volleth M, Bronner G, Göpfert MC, Heller K-G, Von Helversen O, Yong H-S. Karyotype comparison and phylogenetic relationships of Pipistrellus-like bats (Vespertilionidae; Chiroptera; Mammalia) Chromosome Res. 2001;9:25–46. doi: 10.1023/A:1026787515840. PubMed DOI
Volleth M, Heller K-G. Phylogenetic relationships of vespertilionid genera (Mammalia: Chiroptera) as revealed by karyological analysis. Z Zool Syst Evolut-forsch. 1994;32:11–34.
Zima J, Horáček I. Synopsis of karyotypes of vespertilionid bats (Mammalia: Chiroptera) Acta Univ Carol – Biol. 1985;1981:311–329. PubMed
Hoofer SR, Van Den Bussche RA. Molecular phylogenetics of the chiropteran family Vespertilionidae. Acta Chiropterol. 2003;5(Suppl):1–63.
Lack JB, Roehrs ZP, Stanley CE Jr, Ruedi M, Van Den Bussche RA. Molecular phylogenetics of Myotis indicate familial-level divergence for the genus Cistugo (Chiroptera) J Mammal. 2010;91:976–992. doi: 10.1644/09-MAMM-A-192.1. DOI
Roehrs ZP, Lack JB, Van Den Bussche RA. A molecular phylogenetic reevaluation of the tribe Nycticeiini (Chiroptera: Vespertilionidae) Acta Chiropterol. 2011;13:17–31. doi: 10.3161/150811011X578598. DOI
Roehrs ZP, Lack JB, Van Den Bussche RA. Tribal phylogenetic relationships within Vespertilioninae (Chiroptera: Vespertilionidae) based on mitochondrial and nuclear sequence data. J Mammal. 2010;91:1073–1092. doi: 10.1644/09-MAMM-A-325.1. DOI
Monadjem A, Richards L, Taylor PJ, Stoffberg S. High diversity of pipistrelloid bats (Vespertilionidae: Hypsugo, Neoromicia, and Pipistrellus) in a West African rainforest with the description of a new species. Zool J Linn Soc. 2013;167:191–207. doi: 10.1111/j.1096-3642.2012.00871.x. DOI
Stadelmann B, Herrera LG, Arroyo-Cabrales J, Flores-Martínez JJ, May BP, Ruedi M. Molecular systematics of the fishing bat Myotis (Pizonyx) vivesi. J Mammal. 2004;85:133–139. doi: 10.1644/1545-1542(2004)085<0133:MSOTFB>2.0.CO;2. DOI
Stadelmann B, Jacobs DS, Schoeman C, Ruedi M. Phylogeny of African Myotis bats (Chiroptera, Vespertilionidae) inferred from cytochrome b sequences. Acta Chiropterol. 2004;6:177–192. doi: 10.3161/001.006.0201. DOI
Stadelmann B, Lin L-K, Kunz TH, Ruedi M. Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Mol Phylogenet Evol. 2007;43:32–48. doi: 10.1016/j.ympev.2006.06.019. PubMed DOI
Van Cakenberghe V, Seamark ECJ. African Chiroptera Report. Pretoria: AfricanBats; 2012. pp. 1–5902. http://www.africanbats.org.
Tate GHH. Results of the Archbold expeditions. No. 47. Review of the Vespertilionine bats, with special attention to genera and species of the Archbold collection. Bull Am Mus Nat Hist. 1942;80:221–297.
Hill JE, Harrison DL. The baculum in the Vespertilioninae (Chiroptera: Vespertilionidae) with a systematic review, a synopsis of Pipistrellus and Eptesicus, and the descriptions of a new genus and subgenus. Bull Brit Mus Nat Hist Zool. 1987;52:225–305.
Kawai K, Nikaido M, Harada M, Matsumura S, Lin L-K, Wu Y, Hasegawa M, Okada N. The status of the Japanese and East Asian bats of the genus Myotis (Vespertilionidae) based on mitochondrial sequences. Mol Phylogenet Evol. 2003;28:297–307. doi: 10.1016/S1055-7903(03)00121-0. PubMed DOI
Frost DR, Timm RM. Phylogeny of plecotine bats (Chiroptera: “‘Vespertilionidae’”): summary of the evidence and proposal of a logically consistent taxonomy. Am Mus Novit. 1992;3034:1–16.
Volleth M, Heller K-G, Fahr J. Phylogenetic relationships of three “Nycticeiini” genera (Vespertilionidae, Chiroptera, Mammalia) as revealed by karyological analysis. Mamm Biol. 2006;71:1–12.
Horáček I, Fejfar O, Hulva P. A new genus of vespertilionid bat from Early Miocene of Jebel Zelten, Libya, with comments on Scotophilus, and early history of vespertilionid bats (Chiroptera) Lynx, n. 2006;37:131–150.
Hoofer SR, Van Den Bussche RA, Horáček I. Generic status of the American pipistrelles (Vespertilionidae) with description of a new genus. J Mammal. 2006;87:981–992. doi: 10.1644/05-MAMM-A-425R1.1. DOI
Von Helversen O, Heller K-G, Mayer F, Nemeth A, Volleth M, Gombkötö P. Cryptic mammalian species: a new species of whiskered bat (Myotis alcathoe n. sp.) in Europe. Naturwissenschaften. 2001;88:217–223. doi: 10.1007/s001140100225. PubMed DOI
Zhang J-S, Han N-J, Jones G, Lin L-K, Zhang J-P, Zhu G-J, Huang D-W, Zhang S-Y. A new species of Barbastella (Chiroptera: Vespertilionidae) from North China. J Mammal. 2007;88:1393–1403. doi: 10.1644/07-MAMM-A-114R2.1. DOI
Eger JL, Schlitter DA. A new species of Glauconycteris from West Africa (Chiroptera: Vespertilionidae) Acta Chiropterol. 2001;3:1–10.
Goodman SM, Jenkins RKB, Ratrimomanarivo FH. A review of the genus Scotophilus (Mammalia, Chiroptera, Vespertilionidae) on Madagascar, with the description of a new species. Zoosystema. 2005;27:867–882.
Kruskop SV, Lavrenchenko LA. A new species of long-eared bat (Plecotus; Vespertilionidae, Mammalia) from Ethiopia. Myotis. 2000;38:5–17.
Kouame OML, Jengre N, Kobele M, Knox D, Ahon DB, Gbondo J, Gamys J, Egnankou W, Siaffa D, Okoni-Williams A, Saliou M. Key Biodiversity Areas identification in the Upper Guinea forest biodiversity hotspot. J Threat Taxa. 2012;4:2745–2752. doi: 10.11609/JoTT.o2717.2745-52. DOI
Rosevear DR. The Bats of West Africa. United Kingdom: British Museum of Natural History London; 1965. pp. 1–418.
Lelant V, Chenaval N. Bilan succinct des espèces de chauves-souris inventoriées au Sénégal lors de la mission de novembre-décembre 2010. Electronic Report. 2011. http://storage.canalblog.com/44/45/738905/63677824.pdf.
Adam F, Hubert B. Chiroptères nouveaux pour le Sénégal. Mammalia. 1972;36:59–70.
Dorst J. A propos de quelques chiroptères du Sénégal, et description d’une forme nouvelle du genre Pipistrellus. Bull Mus Natl Hist Nat. 1960;31:471–474.
Verschuren J. XXII. Note sur les cheiroptères du Sénégal, principalement dans les parcs nationaux du Niokolo-Koba et du Delta du Saloum. Mém Inst Fr Afr Noire. 1982;92:307–313. PubMed
Aellen V. Le Parc National de Niokolo-Koba. II. Chiroptères. Mém Inst Fr Afr Noire. 1956;48A:23–34. PubMed
Felsenstein J. PHYLIP - Phylogeny Inference Package (Version 3.2) Cladistics. 1989;5:164–166.
Baker RJ, Bradley RD. Speciation in mammals and the genetic species concept. J Mammal. 2006;87:643–662. doi: 10.1644/06-MAMM-F-038R2.1. PubMed DOI PMC
Mayer F, Dietz C, Kiefer A. Molecular species identification boosts bat diversity. Front Zool. 2007;4:4. doi: 10.1186/1742-9994-4-4. PubMed DOI PMC
Kearney TC, Volleth M, Contrafatto G, Taylor PJ. Systematic implications of chromosome GTG-band and bacula morphology for Southern African Eptesicus and Pipistrellus and several other species of Vespertilioninae (Chiroptera: Vespertilionidae) Acta Chiropterol. 2002;4:55–76. doi: 10.3161/001.004.0107. DOI
Bickham JW, Patton JC, Schlitter DA, Rautenbach IL, Honeycutt RL. Molecular phylogenetics, karyotypic diversity, and partition of the genus Myotis (Chiroptera: Vespertilionidae) Mol Phylogenet Evol. 2004;33:333–338. doi: 10.1016/j.ympev.2004.06.012. PubMed DOI
McBee KM, Schlitter DA, Robbins RL. Systematics of African bats of the genus Eptesicus (Mammalia: Vespertilionidae). 2. Karyotypes of African species and their generic relationships. Ann Carnegie Mus. 1987;56:213–222.
Rautenbach IL, Bronner GN, Schlitter DA. Karyotypic data and attendant systematic implications for the bats of southern Africa. Koedoe. 1993;36:87–104.
Peterson RL, Nagorsen DW. Chromosomes of fifteen species of bats (Chiroptera) from Kenya and Rhodesia. Roy Ont Mus Life Sci Occ Pap. 1975;27:1–14.
Rautenbach IL, Fenton MB. Bats from Mana Pools National Park in Zimbabwe and the first record of Eptesicus rendallii from the country. Z Säugetierk. 1992;57:112–115. PubMed
Ruedas LA, Lee TE Jr, Bickham JW, Schlitter DA. Chromosomes of five species of vespertilionid bats from Africa. J Mammal. 1990;71:94–100. doi: 10.2307/1381324. DOI
White TA, Bordewich M, Searle JB. A network approach to study karyotypic evolution: the chromosomal races of the common shrew (Sorex araneus) and house mouse (Mus musculus) as model systems. Syst Biol. 2010;59:262–276. doi: 10.1093/sysbio/syq004. PubMed DOI
Faria R, Navarro A. Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol. 2010;25:660–669. doi: 10.1016/j.tree.2010.07.008. PubMed DOI
Horn A, Basset P, Yannic G, Banaszek A, Borodin PM, Bulatova NS, Jadwiszczak K, Jones RM, Polyakov AV, Ratkiewicz M, Searle JB, Shchipanov NA, Zima J, Hausser J. Chromosomal rearrangements do not seem to affect the gene flow in hybrid zones between karyotypic races of the common shrew (Sorex araneus) Evolution. 2012;66:882–889. doi: 10.1111/j.1558-5646.2011.01478.x. PubMed DOI
Benda P, Hanák V, Andreas M, Reiter A, Uhrin M. Two new species of bats (Chiroptera) for the fauna of Libya: Rhinopoma hardwickii and Pipistrellus rueppellii. Myotis. 2004;41–42:109–124.
Veith M, Mucedda M, Kiefer A, Pidinchedda E. On the presence of pipistrelle bats (Pipistrellus and Hypsugo; Chiroptera: Vespertilionidae) in Sardinia. Acta Chiropterol. 2011;13:89–99. doi: 10.3161/150811011X578642. DOI
Bergsten J. A review of long-branch attraction. Cladistics. 2005;21:163–193. doi: 10.1111/j.1096-0031.2005.00059.x. PubMed DOI
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI
Roberts A. Descriptions of numerous new subspecies of mammals. Ann Transvaal Mus. 1946;20:303–328.
Kearney TC. Systematic revision of southern African species in the genera Eptesicus, Neoromicia, Hypsugo and Pipistrellus (Chiroptera: Vespertilionidae) Durban: PhD thesis. University of Kwa-Zulu-Natal; 2005. pp. 1–580.
Roberts A. Preliminary description of fifty-seven new forms of South African mammals. Mainly 38 from Vernay-Lang Kalahari Expedition, 1930. Ann Transvaal Mus. 1932;15:1–19.
Kock D. Identity of the African Vespertilio hesperida Temminck 1840 (Mammalia, Chiroptera, Vespertilionidae) Senckenberg Biol. 2001;81:277–283.
Porter CA, Primus AW, Hoffmann FG, Baker RJ. Karyology of five species of bats (Vespertilionidae, Hipposideridae, and Nycteridae) from Gabon with comments on the taxonomy of Glauconycteris. Occ Pap Mus Tex Tech Univ. 2010;295:1–7.
Lack JB, Van Den Bussche RA. Identifying the confounding factors in resolving phylogenetic relationships in Vespertilionidae. J Mammal. 2010;91:1435–1448. doi: 10.1644/09-MAMM-A-354.1. DOI
Francis CM, Borisenko AV, Ivanova NV, Eger JL, Lim BK, Guillén-Servent A, Kruskop SV, Mackie I, Hebert PDN. The role of DNA barcodes in understanding and conservation of mammal diversity in Southeast Asia. PLoS ONE. 2010;5:e12575. doi: 10.1371/journal.pone.0012575. PubMed DOI PMC
Kingdon J. The Kingdon Field Guide to African Mammals. Princeton: A&C Black Publishers; 1997. p. 478.
Csorba G, Son NT, Saveng I, Furey NM. Revealing cryptic bat diversity: three new Murina and redescription of M. tubinaris from Southeast Asia. J Mammal. 2011;92:891–904. doi: 10.1644/10-MAMM-A-269.1. DOI
Agnarsson I, Zambrana-Torrelio CM, Flores-Saldana NP, May-Collado LJ. A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia) PLoS Curr. 2011;3 RRN1212. PubMed PMC
Hanák V, Horáček I. Zur Südgrenze des Areals von Eptesicus nilssoni (Chiroptera: Vespertilionidae) Ann Naturhist Mus Wien. 1985;88:337–388.
Clare EL. Cryptic species? Patterns of maternal and paternal gene flow in eight Neotropical bats. PLoS ONE. 2011;6:e21460. PubMed PMC
Nesi N, Kadjo B, Pourrut X, Leroy E, Pongombo Shongo C, Cruaud C, Hassanin A. Molecular systematics and phylogeography of the tribe Myonycterini (Mammalia, Pteropodidae) inferred from mitochondrial and nuclear markers. Mol Phylogenet Evol. 2013;66:126–137. doi: 10.1016/j.ympev.2012.09.028. PubMed DOI
DeMenocal PB. African climate change and faunal evolution during the Pliocene–Pleistocene. Earth Planet Sci Lett. 2004;220:3–24. doi: 10.1016/S0012-821X(04)00003-2. DOI
Bonnefille R. Cenozoic vegetation, climate changes and hominid evolution in tropical Africa. Global Planet Change. 2010;72:390–411. doi: 10.1016/j.gloplacha.2010.01.015. DOI
Nicolas V, Missoup AD, Denys C, Kerbis Peterhans J, Katuala P, Couloux A, Colyn M. The roles of rivers and Pleistocene refugia in shaping genetic diversity in Praomys misonnei in tropical Africa. J Biogeogr. 2011;38:191–207. doi: 10.1111/j.1365-2699.2010.02399.x. DOI
Maley J. The African rain forest: main characteristics of changes in vegetation and climate from the Upper Cretaceous to the Quaternary. Proc Roy Soc Edinburgh. 1996;104B:31–73.
Lorenzen ED, Masembe C, Arctander P, Siegismund HR. A long-standing Pleistocene refugium in southern Africa and a mosaic of refugia in East Africa: insights from mtDNA and the common eland antelope. J Biogeogr. 2010;37:571–581. doi: 10.1111/j.1365-2699.2009.02207.x. DOI
Booth AH. The Niger, the Volta and the Dahomey Gap as geographic barriers. Evolution. 1958;12:48–62. doi: 10.2307/2405903. DOI
Salzmann U, Hoelzmann P. The Dahomey Gap: an abrupt climatically induced rain forest fragmentation in West Africa during the late Holocene. The Holocene. 2005;15:190–199. doi: 10.1191/0959683605hl799rp. DOI
Booth AH. The Dahomey Gap and the mammalian fauna of the West African Forest. Rev Zool Bot Afr. 1954;50:305–314.
Nicolas V, Quérouil S, Verheyen E, Verheyen W, Mboumba JF, Dillen M, Colyn M. Mitochondrial phylogeny of African wood mice, genus Hylomyscus (Rodentia, Muridae): Implications for their taxonomy and biogeography. Mol Phylogenet Evol. 2006;38:779–793. doi: 10.1016/j.ympev.2005.11.024. PubMed DOI
Fuchs J, Crowe TM, Bowie RCK. Phylogeography of the fiscal shrike (Lanius collaris): a novel pattern of genetic structure across the arid zones and savannas of Africa. J Biogeogr. 2011;38:2210–2222. doi: 10.1111/j.1365-2699.2011.02545.x. DOI
Lorenzen ED, Arctander P, Siegismund HR. Three reciprocally monophyletic mtDNA lineages elucidate the taxonomic status of Grant’s gazelles. Conservation Genetics. 2008;9:593–601. doi: 10.1007/s10592-007-9375-2. DOI
Muwanika VB, Nyakaana S, Siegismund HR, Arctander P. Phylogeography and population structure of the common warthog (Phacochoerus africanus) inferred from variation in mitochondrial DNA sequences and microsatellite loci. Heredity. 2003;91:361–372. doi: 10.1038/sj.hdy.6800341. PubMed DOI
Djossa BA, Sinsin BA, Kalko EKV, Fahr J. Inventory of bat species of Niaouli Forest, Bénin, and its bearing on the significance of the Dahomey Gap as a zoogeographic barrier. African Bat Conservation News. 2008;15:4–6.
Robbins CB. The Dahomey gap – a reevaluation of its significance as a faunal barrier to West African high forest mammals. Bull Carnegie Mus nat Hist. 1978;6:168–174.
Weber N, Kalko EKV, Fahr J. A first assessment of home range and foraging behaviour of the African long-tongued bat Megaloglossus woermanni (Chiroptera: Pteropodidae) in a heterogeneous landscape within the Lama Forest Reserve, Benin. Acta Chiropterol. 2009;11:317–329. doi: 10.3161/150811009X485558. DOI
Larsen RJ, Knapp MC, Genoways HH, Khan FAA, Larsen PA, Wilson DE, Baker RJ. Genetic Diversity of Neotropical Myotis (Chiroptera: Vespertilionidae) with an Emphasis on South American Species. PLoS ONE. 2012;7:e46578. doi: 10.1371/journal.pone.0046578. PubMed DOI PMC
Eaton MJ, Martin A, Thorbjarnarson J, Amato G. Species-level diversification of African dwarf crocodiles (Genus Osteolaemus): A geographic and phylogenetic perspective. Mol Phylogenet Evol. 2009;50:496–506. doi: 10.1016/j.ympev.2008.11.009. PubMed DOI
Hausberger B, Kimpel D, Van Neer A, Korb J. Uncovering cryptic species diversity of a termite community in a West African savanna. Mol Phylogenet Evol. 2011;61:964–969. doi: 10.1016/j.ympev.2011.08.015. PubMed DOI
Vallo P, Benda P, Červený J, Koubek P. Conflicting mitochondrial and nuclear paraphyly in small-sized West African house bats (Vespertilionidae) Zool Scr. 2013;42:1–12. doi: 10.1111/j.1463-6409.2012.00563.x. DOI
Vallo P, Benda P, Martínková N, Kaňuch P, Kalko EKV, Červený J, Koubek P. Morphologically uniform bats Hipposideros aff. ruber (Hipposideridae) exhibit high mitochondrial genetic diversity in southeastern Senegal. Acta Chiropterol. 2011;13:79–88. doi: 10.3161/150811011X578633. DOI
Koubínová D, Sreepada KS, Koubek P, Zima J. Karyotypic variation in rhinolophid and hipposiderid bats (Chiroptera: Rhinolophidae, Hipposideridae) Acta Chiropterol. 2010;12:393–400. doi: 10.3161/150811010X537972. DOI
Barratt EM, Deaville R, Burland TM, Bruford MW, Jones G, Racey PA, Wayne RK. DNA answers the call of pipistrelle bat species. Nature. 1997;387:138–139. PubMed
Kingston T, Rossiter SJ. Harmonic-hopping in Wallacea’s bats. Nature. 2004;429:654–657. doi: 10.1038/nature02487. PubMed DOI
Hulva P, Fornůsková A, Chudárková A, Evin A, Allegrini B, Benda P, Bryja J. Mechanisms of radiation in a bat group from the genus Pipistrellus inferred by phylogeography, demography and population genetics. Mol Ecol. 2010;19:5417–5431. doi: 10.1111/j.1365-294X.2010.04899.x. PubMed DOI
Planiglobe. http://www.planiglobe.com.
Baker RJ. In: Biology of Bats. Volume 130. Wimsatt WA, editor. New York: Academic Press; 1; 1970. Karyotypic trends in bats; pp. 65–96.
Hsu TC, Benirschke K. An Atlas of Mammalian Chromosomes. Volumes 1-10. Berlin Heidelberg - New York: Springer Verlag; 1967. p. 1977.
Springer MS, Hollar LJ, Burk A. Compensatory substitutions and the evolution of the mitochondrial 12S rRNA gene in mammals. Mol Biol Evol. 1995;12:1138–1150. PubMed
Teeling EC, Scally M, Kao DJ, Romagnoli ML, Springer MS, Stanhope MJ. Molecular evidence regarding the origin of echolocation and flight in bats. Nature. 2000;403:188–192. doi: 10.1038/35003188. PubMed DOI
Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A. Geneious V5.4. 2011. http://www.geneious.com.
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
MAFFT version 6. http://mafft.cbrc.jp/alignment/server/
Warnow T. Standard maximum likelihood analyses of alignments with gaps can be statistically inconsistent. PLoS Curr. 2012;4:RRN1308. PubMed PMC
Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56:564–577. doi: 10.1080/10635150701472164. PubMed DOI
Nylander JAA. MrModeltest 2.3. Program distributed by the author. Uppsala University: Evolutionary Biology Centre; 2004.
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop: 14 November. LA: GCE New Orleans; 2010. pp. 1–8.
Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary? J Comput Biol. 2010;17:337–354. doi: 10.1089/cmb.2009.0179. PubMed DOI
Degnan JH, Rosenberg NA. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol. 2009;24:332–340. doi: 10.1016/j.tree.2009.01.009. PubMed DOI