New non-linear color look-up table for visualization of brain fractional anisotropy based on normative measurements - principals and first clinical use
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23990954
PubMed Central
PMC3750032
DOI
10.1371/journal.pone.0071431
PII: PONE-D-13-01428
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- anizotropie * MeSH
- barva * MeSH
- bazální ganglia fyziologie MeSH
- čelní lalok fyziologie MeSH
- corpus callosum fyziologie MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mapování mozku metody MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozek fyziologie MeSH
- multisystémová atrofie diagnóza patologie MeSH
- Parkinsonova nemoc diagnóza patologie MeSH
- poměr signál - šum MeSH
- referenční hodnoty MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- senzitivita a specificita MeSH
- software MeSH
- thalamus fyziologie MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- zobrazování difuzních tenzorů metody MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Fractional anisotropy (FA) is the most commonly used quantitative measure of diffusion in the brain. Changes in FA have been reported in many neurological disorders, but the implementation of diffusion tensor imaging (DTI) in daily clinical practice remains challenging. We propose a novel color look-up table (LUT) based on normative data as a tool for screening FA changes. FA was calculated for 76 healthy volunteers using 12 motion-probing gradient directions (MPG), a subset of 59 subjects was additionally scanned using 30 MPG. Population means and 95% prediction intervals for FA in the corpus callosum, frontal gray matter, thalamus and basal ganglia were used to create the LUT. Unique colors were assigned to inflection points with continuous ramps between them. Clinical use was demonstrated on 17 multiple system atrophy (MSA) patients compared to 13 patients with Parkinson disease (PD) and 17 healthy subjects. Four blinded radiologists classified subjects as MSA/non-MSA. Using only the LUT, high sensitivity (80%) and specificity (84%) were achieved in differentiating MSA subjects from PD subjects and controls. The LUTs generated from 12 and 30 MPG were comparable and accentuate FA abnormalities.
Zobrazit více v PubMed
Bosch B, Arenaza-Urquijo EM, Rami L, Sala-Llonch R, Junqué C, et al. (2012) Multiple DTI index analysis in normal aging, amnestic MCI and AD. relationship with neuropsychological performance. Neurobiology of Aging 33: 61–74. PubMed
Peters BD, Blaas J, de Haan L (2010) Diffusion tensor imaging in the early phase of schizophrenia: what have we learned? Journal of Psychiatric Research 44: 993–1004. PubMed
Chan L, Rumpel H, Yap K, Lee E, Loo H, et al. (2007) Case control study of diffusion tensor imaging in parkinson's disease. Journal of Neurology, Neurosurgery, and Psychiatry 78: 1383–1386. PubMed PMC
Jolapara M, Patro SN, Kesavadas C, Saini J, Thomas B, et al... (2010) Can diffusion tensor metrics help in preoperative grading of diffusely infiltrating astrocytomas? a retrospective study of 36 cases. Neuroradiology. PubMed
Harrison DM, Caffo BS, Shiee N, Farrell JAD, Bazin P, et al. (2011) Longitudinal changes in diffusion tensor-based quantitative MRI in multiple sclerosis. Neurology 76: 179–186. PubMed PMC
Mitelman SA, Nikiforova YK, Canfield EL, Hazlett EA, Brickman AM, et al. (2009) A longitudinal study of the corpus callosum in chronic schizophrenia. Schizophrenia Research 114: 144–153. PubMed PMC
Xu J, DeVito EE, Worhunsky PD, Carroll KM, Rounsaville BJ, et al. (2010) White matter integrity is associated with treatment outcome measures in cocaine dependence. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology 35: 1541–1549. PubMed PMC
Van Camp N, Blockx I, Camón L, de Vera N, Verhoye M, et al... (2010) A complementary diffusion tensor imaging (DTI)-histological study in a model of huntington's disease. Neurobiology of Aging. PubMed
Ibrahim I, Horacek J, Bartos A, Hajek M, Ripova D, et al. (2009) Combination of voxel based morphometry and diffusion tensor imaging in patients with alzheimer's disease. Neuro Endocrinology Letters 30: 39–45. PubMed
Weiss KL, Stiving SO, Herderick EE, Cornhill JF, Chakeres DW (1987) Hybrid color MR imaging display. AJR American Journal of Roentgenology 149: 825–829. PubMed
Weiss KL, Dong Q, Weadock WJ, Welsh RC, Shah GV (2002) Multiparametric color-encoded brain MR imaging in talairach space. Radiographics: A Review Publication of the Radiological Society of North America, Inc 22: e3. PubMed
Pajevic S, Pierpaoli C (1999) Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine 42: 526–540. PubMed
Tha KK, Terae S, Yabe I, Miyamoto T, Soma H, et al. (2010) Microstructural white matter abnormalities of multiple system atrophy: In vivo topographic illustration by using Diffusion-Tensor MR imaging1. Radiology 255: 563–569. PubMed
Taoka T, Kin T, Nakagawa H, Hirano M, Sakamoto M, et al. (2007) Diffusivity and diffusion anisotropy of cerebellar peduncles in cases of spinocerebellar degenerative disease. NeuroImage 37: 387–393. PubMed
Shiga K, Yamada K, Yoshikawa K, Mizuno T, Nishimura T, et al. (2005) Local tissue anisotropydecreases in cerebellopetal fibers and pyramidal tract in multiple system atrophy. Journal of Neurology 252: 589–596. PubMed
Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, et al. (2004) Advances in functional and structural mr image analysis and implementation as fsl. Neuroimage 23 Suppl 1S208–S219. PubMed
Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17: 143–155. PubMed PMC
Rasband W (1997–2008). Imagej. Available: http://rsb.info.nih.gov/ij/.
Palmer SL, Reddick WE, Glass JO, Gajjar A, Goloubeva O, et al. (2002) Decline in corpus callosum volume among pediatric patients with medulloblastoma: Longitudinal MR imaging study. American Journal of Neuroradiology 23: 1088–1094. PubMed PMC
Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38: 963–974. PubMed
R Development Core Team (2009) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available: http://www.R-project.org. ISBN 3–900051–07–0.
Bates D, Maechler M, Bolker B (2011). lme4: Linear mixed-effects models using s4 classes. r package version 0.999375–33.
Preti MG, Baglio F, Laganà MM, Griffanti L, Nemni R, et al. (2012) Assessing corpus callosum changes in alzheimer's disease: Comparison between tract-based spatial statistics and atlas-based tractography. PLoS ONE 7: e35856. PubMed PMC
Llufriu S, Blanco Y, Martinez-Heras E, Casanova-Molla J, Gabilondo I, et al. (2012) Influence of corpus callosum damage on cognition and physical disability in multiple sclerosis: A multimodal study. PLoS ONE 7: e37167. PubMed PMC
Yuan K, Qin W, Liu P, Zhao L, Yu D, et al. (2012) Reduced fractional anisotropy of corpus callosum modulates inter-hemispheric resting state functional connectivity in migraine patients without aura. PLoS ONE 7: e45476. PubMed PMC
Bozzali M, Mastropasqua C, Cercignani M, Giulietti G, Bonnì S, et al. (2012) Microstructural damage of the posterior corpus callosum contributes to the clinical severity of neglect. PLoS ONE 7: e48079. PubMed PMC
Sharma KR, Sheriff S, Maudsley A, Govind V (2012) Diffusion tensor imaging of basal ganglia and thalamus in amyotrophic lateral sclerosis. Journal of neuroimaging: official journal of the American Society of Neuroimaging. PubMed PMC
Douaud G, Behrens TE, Poupon C, Cointepas Y, Jbabdi S, et al. (2009) In vivo evidence for the selective subcortical degeneration in huntington's disease. NeuroImage 46: 958–966. PubMed
Rulseh AM, Keller J, Tinte˘ra J, Kožíšek M, Vymazal J (2013) Chasing shadows: What determines DTI metrics in gray matter regions? an in vitro and in vivo study. JMRI DOI: 10.1002/jmri.24065 PubMed DOI
Giuliani NR, Calhoun VD, Pearlson GD, Francis A, Buchanan RW (2005) Voxel-based morphometry versus region of interest: a comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophrenia Research 74: 135–147. PubMed
Snook L, Plewes C, Beaulieu C (2007) Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. NeuroImage 34: 243–252. PubMed
Keller J, Rulseh A, Syka M, Vymazal J (2010) Fractional anisotropy in various white and gray matter regions in adulthood. dependence on age an d comparison of two dti sequences. Book of Abstracts – ISMRM-ESMRMB Joint Annual Meeting: Poster 1560.