Ursodeoxycholic acid but not tauroursodeoxycholic acid inhibits proliferation and differentiation of human subcutaneous adipocytes
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
301/11/0748
Cancer Research UK - United Kingdom
PubMed
24312631
PubMed Central
PMC3849437
DOI
10.1371/journal.pone.0082086
PII: PONE-D-13-22306
Knihovny.cz E-zdroje
- MeSH
- adipogeneze účinky léků MeSH
- aktivace enzymů účinky léků MeSH
- buněčná diferenciace účinky léků MeSH
- cytokiny genetika MeSH
- kyselina taurochenodeoxycholová farmakologie MeSH
- kyselina ursodeoxycholová farmakologie MeSH
- lidé MeSH
- mitogenem aktivovaná proteinkinasa 1 metabolismus MeSH
- mitogenem aktivovaná proteinkinasa 3 metabolismus MeSH
- podkožní tuk cytologie MeSH
- proliferace buněk účinky léků MeSH
- regulace genové exprese účinky léků MeSH
- stres endoplazmatického retikula účinky léků MeSH
- tukové buňky cytologie účinky léků metabolismus MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
- kyselina taurochenodeoxycholová MeSH
- kyselina ursodeoxycholová MeSH
- mitogenem aktivovaná proteinkinasa 1 MeSH
- mitogenem aktivovaná proteinkinasa 3 MeSH
- ursodoxicoltaurine MeSH Prohlížeč
Stress of endoplasmic reticulum (ERS) is one of the molecular triggers of adipocyte dysfunction and chronic low inflammation accompanying obesity. ERS can be alleviated by chemical chaperones from the family of bile acids (BAs). Thus, two BAs currently used to treat cholestasis, ursodeoxycholic and tauroursodeoxycholic acid (UDCA and TUDCA), could potentially lessen adverse metabolic effects of obesity. Nevertheless, BAs effects on human adipose cells are mostly unknown. They could regulate gene expression through pathways different from their chaperone function, namely through activation of farnesoid X receptor (FXR) and TGR5, G-coupled receptor. Therefore, this study aimed to analyze effects of UDCA and TUDCA on human preadipocytes and differentiated adipocytes derived from paired samples of two distinct subcutaneous adipose tissue depots, abdominal and gluteal. While TUDCA did not alter proliferation of cells from either depot, UDCA exerted strong anti-proliferative effect. In differentiated adipocytes, acute exposition to neither TUDCA nor UDCA was able to reduce effect of ERS stressor tunicamycin. However, exposure of cells to UDCA during whole differentiation process decreased expression of ERS markers. At the same time however, UDCA profoundly inhibited adipogenic conversion of cells. UDCA abolished expression of PPARγ and lipogenic enzymes already in the early phases of adipogenesis. This anti-adipogenic effect of UDCA was not dependent on FXR or TGR5 activation, but could be related to ability of UDCA to sustain the activation of ERK1/2 previously linked with PPARγ inactivation. Finally, neither BAs did lower expression of chemokines inducible by TLR4 pathway, when UDCA enhanced their expression in gluteal adipocytes. Therefore while TUDCA has neutral effect on human preadipocytes and adipocytes, the therapeutic use of UDCA different from treating cholestatic diseases should be considered with caution because UDCA alters functions of human adipose cells.
Zobrazit více v PubMed
Guilherme A, Virbasius JV, Puri V, Czech MP (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9: 367-377. doi:10.1038/nrm2391. PubMed: 18401346. PubMed DOI PMC
Langin D, Dicker A, Tavernier G, Hoffstedt J, Mairal A et al. (2005) Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 54: 3190-3197. doi:10.2337/diabetes.54.11.3190. PubMed: 16249444. PubMed DOI
Mlinar B, Marc J (2011) New insights into adipose tissue dysfunction in insulin resistance. Clin Chem Lab Med 49: 1925-1935. PubMed: 21892913. PubMed
Gregor MF, Hotamisligil GS (2007) Thematic review series: Adipocyte Biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. Journal of Lipid Research 48: 1905-1914. doi:10.1194/jlr.R700007-JLR200. PubMed DOI
Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140: 900-917. doi:10.1016/j.cell.2010.02.034. PubMed: 20303879. PubMed DOI PMC
Sharma NK, Das SK, Mondal AK, Hackney OG, Chu WS et al. (2008) Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects. J Clin Endocrinol Metab 93: 4532-4541. doi:10.1210/jc.2008-1001. PubMed: 18728164. PubMed DOI PMC
Gregor MF, Yang L, Fabbrini E, Mohammed BS, Eagon JC et al. (2009) Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 58: 693-700. PubMed: 19066313. PubMed PMC
Zhang X, Zhang G, Zhang H, Karin M, Bai H et al. (2008) Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 135: 61-73. doi:10.1016/j.cell.2008.07.043. PubMed: 18854155. PubMed DOI PMC
Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G et al. (2009) Bile acids as regulatory molecules. J Lipid Res 50: 1509-1520. doi:10.1194/jlr.R900007-JLR200. PubMed: 19346331. PubMed DOI PMC
Kawasaki N, Asada R, Saito A, Kanemoto S, Imaizumi K (2012) Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci Rep 2: 799 PubMed: 23150771. PubMed PMC
Abdelkarim M, Caron S, Duhem C, Prawitt J, Dumont J et al. (2010) The farnesoid X receptor regulates adipocyte differentiation and function by promoting peroxisome proliferator-activated receptor-gamma and interfering with the Wnt/beta-catenin pathways. J Biol Chem 285: 36759-36767. doi:10.1074/jbc.M110.166231. PubMed: 20851881. PubMed DOI PMC
Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW et al. (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439: 484-489. doi:10.1038/nature04330. PubMed: 16400329. PubMed DOI
Rizzo G, Disante M, Mencarelli A, Renga B, Gioiello A et al. (2006) The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo. Mol Pharmacol 70: 1164-1173. doi:10.1124/mol.106.023820. PubMed: 16778009. PubMed DOI
Bergamini A, Dini L, Baiocchi L, Cappannoli L, Falasca L et al. (1997) Bile acids with differing hydrophilic-hydrophobic properties do not influence cytokine production by human monocytes and murine Kupffer cells. Hepatology 25: 927-933. doi:10.1002/hep.510250423. PubMed: 9096599. PubMed DOI
Ceylan-Isik AF, Sreejayan N, Ren J (2011) Endoplasmic reticulum chaperon tauroursodeoxycholic acid alleviates obesity-induced myocardial contractile dysfunction. J Mol Cell Cardiol 50: 107-116. doi:10.1016/j.yjmcc.2010.10.023. PubMed: 21035453. PubMed DOI PMC
Krishna-Subramanian S, Hanski ML, Loddenkemper C, Choudhary B, Pagès G et al. (2012) UDCA slows down intestinal cell proliferation by inducing high and sustained ERK phosphorylation. Int J Cancer 130: 2771-2782. doi:10.1002/ijc.26336. PubMed: 21805474. PubMed DOI
Camp HS, Tafuri SR (1997) Regulation of peroxisome proliferator-activated receptor gamma activity by mitogen-activated protein kinase. J Biol Chem 272: 10811-10816. doi:10.1074/jbc.272.16.10811. PubMed: 9099735. PubMed DOI
Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S (2009) The Bile Acid Receptor FXR Is a Modulator of Intestinal Innate. Immunity - Journal of Immunology 183: 6251-6261. PubMed
Elliott CL, Allport VC, Loudon JAZ, Wu GD, Bennett PR (2001) Nuclear factor-kappa B is essential for up-regulation of interleukin-8 expression in human amnion and cervical epithelial cells. Mol Hum Reprod 7: 787-790. doi:10.1093/molehr/7.8.787. PubMed: 11470867. PubMed DOI
Kim JM, Oh YK, Lee JH, Im DY, Kim YJ et al. (2005) Induction of proinflammatory mediators requires activation of the TRAF, NIK, IKK and NF-κB signal transduction pathway in astrocytes infected with Escherichia coli. Clinical and Experimental Immunology 140: 450-460. PubMed PMC
Berger E, Haller D (2011) Structure-function analysis of the tertiary bile acid TUDCA for the resolution of endoplasmic reticulum stress in intestinal epithelial cells. Biochem Biophys Res Commun 409: 610-615. doi:10.1016/j.bbrc.2011.05.043. PubMed: 21605547. PubMed DOI
Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E et al. (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313: 1137-1140. doi:10.1126/science.1128294. PubMed: 16931765. PubMed DOI PMC
Engin F, Hotamisligil GS (2010) Restoring endoplasmic reticulum function by chemical chaperones: an emerging therapeutic approach for metabolic diseases. Diabetes Obes Metab 12 Suppl 2: 108-115. doi:10.1111/j.1463-1326.2010.01282.x. PubMed: 21029307. PubMed DOI
Kaplan MM, Gershwin ME (2005) Primary biliary cirrhosis. N Engl J Med 353: 1261-1273. doi:10.1056/NEJMra043898. PubMed: 16177252. PubMed DOI
Manolopoulos KN, Karpe F, Frayn KN (2010) Gluteofemoral body fat as a determinant of metabolic health. Int J Obes (Lond) 34: 949-959. doi:10.1038/ijo.2009.286. PubMed: 20065965. PubMed DOI
Tan GD, Goossens GH, Humphreys SM, Vidal H, Karpe F (2004) Upper and lower body adipose tissue function: a direct comparison of fat mobilization in humans. Obes Res 12: 114-118. doi:10.1038/oby.2004.15. PubMed: 14742849. PubMed DOI
Tchoukalova YD, Votruba SB, Tchkonia T, Giorgadze N, Kirkland JL et al. (2010) Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc Natl Acad Sci U S A 107: 18226-18231. doi:10.1073/pnas.1005259107. PubMed: 20921416. PubMed DOI PMC
Peiró-Jordán R, Krishna-Subramanian S, Hanski ML, Lüscher-Firzlaff J, Zeitz M et al. (2012) The chemopreventive agent ursodeoxycholic acid inhibits proliferation of colon carcinoma cells by suppressing c-Myc expression. Eur J Cancer Prev 21: 413-422. doi:10.1097/CEJ.0b013e32834ef16f. PubMed: 22395148. PubMed DOI
Akare S, Jean-Louis S, Chen W, Wood DJ, Powell AA et al. (2006) Ursodeoxycholic acid modulates histone acetylation and induces differentiation and senescence. Int J Cancer 119: 2958-2969. doi:10.1002/ijc.22231. PubMed: 17019713. PubMed DOI
Shiraki K, Ito T, Sugimoto K, Fuke H, Inoue T et al. (2005) Different effects of bile acids, ursodeoxycholic acid and deoxycholic acid, on cell growth and cell death in human colonic adenocarcinoma cells. Int J Mol Med 16: 729-733. PubMed: 16142412. PubMed
Amaral JD, Castro RE, Solá S, Steer CJ, Rodrigues CM (2007) p53 is a key molecular target of ursodeoxycholic acid in regulating apoptosis. J Biol Chem 282: 34250-34259. doi:10.1074/jbc.M704075200. PubMed: 17881359. PubMed DOI
Byrne AM, Foran E, Sharma R, Davies A, Mahon C et al. (2010) Bile acids modulate the Golgi membrane fission process via a protein kinase Ceta and protein kinase D-dependent pathway in colonic epithelial cells. Carcinogenesis 31: 737-744. doi:10.1093/carcin/bgq011. PubMed: 20093383. PubMed DOI
Zhou L, Liu M, Zhang J, Chen H, Dong LQ et al. (2010) DsbA-L Alleviates Endoplasmic Reticulum Stress-induced Adiponectin Down-regulation. Diabetes. PubMed PMC
Kars M, Yang L, Gregor MF, Mohammed BS, Pietka TA et al. (2010) Tauroursodeoxycholic Acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 59: 1899-1905. doi:10.2337/db10-0308. PubMed: 20522594. PubMed DOI PMC
Bouscarel B, Ceryak S, Gettys TW, Fromm H, Noonan F (1995) Alteration of cAMP-mediated hormonal responsiveness by bile acids in cells of nonhepatic origin. Am J Physiol 268: G908-G916. PubMed: 7611411. PubMed
Li N, Hartley DP, Cherrington NJ, Klaassen CD (2002) Tissue expression, ontogeny, and inducibility of rat organic anion transporting polypeptide 4. J Pharmacol Exp Ther 301: 551-560. doi:10.1124/jpet.301.2.551. PubMed: 11961056. PubMed DOI
Iguchi Y, Nishimaki-Mogami T, Yamaguchi M, Teraoka F, Kaneko T et al. (2011) Effects of chemical modification of ursodeoxycholic acid on TGR5 activation. Biol Pharm Bull 34: 1-7. doi:10.1248/bpb.34.1. PubMed: 21212509. PubMed DOI
Lew JL, Zhao A, Yu J, Huang L, De Pedro N et al. (2004) The farnesoid X receptor controls gene expression in a ligand- and promoter-selective fashion. J Biol Chem 279: 8856-8861. doi:10.1074/jbc.M306422200. PubMed: 14684751. PubMed DOI
Cariou B, van Harmelen K, Duran-Sandoval D, van Dijk TH, Grefhorst A et al. (2006) The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem 281: 11039-11049. doi:10.1074/jbc.M510258200. PubMed: 16446356. PubMed DOI
Laurencikiene J, Rydén M (2012) Liver X receptors and fat cell metabolism. Int J Obes (Lond), 36: 1494–502. PubMed: 22370853. PubMed PMC
Furuhashi M, Tuncman G, Görgün CZ, Makowski L, Atsumi G et al. (2007) Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature 447: 959-965. doi:10.1038/nature05844. PubMed: 17554340. PubMed DOI PMC
Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K (2011) The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 54: 1263-1272. doi:10.1016/j.jhep.2010.12.004. PubMed: 21145931. PubMed DOI PMC
Svensson PA, Olsson M, Andersson-Assarsson JC, Taube M, Pereira MJ et al. (2013) The TGR5 gene is expressed in human subcutaneous adipose tissue and is associated with obesity, weight loss and resting metabolic rate. Biochem Biophys Res Commun 433: 563-566. doi:10.1016/j.bbrc.2013.03.031. PubMed: 23523790. PubMed DOI PMC
Tiwari A, Maiti P (2009) TGR5: an emerging bile acid G-protein-coupled receptor target for the potential treatment of metabolic disorders. Drug Discov Today 14: 523-530. doi:10.1016/j.drudis.2009.02.005. PubMed: 19429513. PubMed DOI
Bost F, Aouadi M, Caron L, Binétruy B (2005) The role of MAPKs in adipocyte differentiation and obesity. Biochimie 87: 51-56. doi:10.1016/j.biochi.2004.10.018. PubMed: 15733737. PubMed DOI
Tang QQ, Otto TC, Lane MD (2003) Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc Natl Acad Sci U S A 100: 44-49. doi:10.1073/pnas.0137044100. PubMed: 12502791. PubMed DOI PMC
Hu E, Kim JB, Sarraf P, Spiegelman BM (1996) Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science 274: 2100-2103. doi:10.1126/science.274.5295.2100. PubMed: 8953045. PubMed DOI
Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR et al. (2000) Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275: 9645-9652. doi:10.1074/jbc.275.13.9645. PubMed: 10734116. PubMed DOI
Shah SA, Volkov Y, Arfin Q, Abdel-Latif MM, Kelleher D (2006) Ursodeoxycholic acid inhibits interleukin 1 beta [corrected] and deoxycholic acid-induced activation of NF-kappaB and AP-1 in human colon cancer cells. Int J Cancer 118: 532-539. doi:10.1002/ijc.21365. PubMed: 16106402. PubMed DOI
Evans J, Goedecke JH, Söderström I, Burén J, Alvehus M et al. (2011) Depot- and ethnic-specific differences in the relationship between adipose tissue inflammation and insulin sensitivity. Clin Endocrinol (Oxf) 74: 51-59. doi:10.1111/j.1365-2265.2010.03883.x. PubMed: 20874774. PubMed DOI