Lymphedema alters lipolytic, lipogenic, immune and angiogenic properties of adipose tissue: a hypothesis-generating study in breast cancer survivors
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
33854130
PubMed Central
PMC8046998
DOI
10.1038/s41598-021-87494-3
PII: 10.1038/s41598-021-87494-3
Knihovny.cz E-zdroje
- MeSH
- cytokiny genetika MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- lipolýza MeSH
- lymfedém související s rakovinou prsu genetika metabolismus MeSH
- lymfedém genetika metabolismus MeSH
- přežívající onkologičtí pacienti MeSH
- regulace genové exprese MeSH
- senioři MeSH
- stanovení celkové genové exprese metody MeSH
- studie případů a kontrol MeSH
- tuková tkáň metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- cytokiny MeSH
Later stages of secondary lymphedema are associated with the massive deposition of adipose tissue (AT). The factors driving lymphedema-associated AT (LAT) expansion in humans remain rather elusive. We hypothesized that LAT expansion could be based on alterations of metabolic, adipogenic, immune and/or angiogenic qualities of AT. AT samples were acquired from upper limbs of 11 women with unilateral breast cancer-related lymphedema and 11 healthy women without lymphedema. Additional control group of 11 female breast cancer survivors without lymphedema was used to assess systemic effects of lymphedema. AT was analysed for adipocyte size, lipolysis, angiogenesis, secretion of cytokines, immune and stem cell content and mRNA gene expression. Further, adipose precursors were isolated and tested for their proliferative and adipogenic capacity. The effect of undrained LAT- derived fluid on adipogenesis was also examined. Lymphedema did not have apparent systemic effect on metabolism and cytokine levels, but it was linked with higher lymphocyte numbers and altered levels of several miRNAs in blood. LAT showed higher basal lipolysis, (lymph)angiogenic capacity and secretion of inflammatory cytokines when compared to healthy AT. LAT contained more activated CD4+ T lymphocytes than healthy AT. mRNA levels of (lymph)angiogenic markers were deregulated in LAT and correlated with markers of lipolysis. In vitro, adipose cells derived from LAT did not differ in their proliferative, adipogenic, lipogenic and lipolytic potential from cells derived from healthy AT. Nevertheless, exposition of preadipocytes to LAT-derived fluid improved their adipogenic conversion when compared with the effect of serum. This study presents results of first complex analysis of LAT from upper limb of breast cancer survivors. Identified LAT alterations indicate a possible link between (lymph)angiogenesis and lipolysis. In addition, our in vitro results imply that AT expansion in lymphedema could be driven partially by exposition of adipose precursors to undrained LAT-derived fluid.
Zobrazit více v PubMed
Brorson H, Ohlin K, Olsson G, Karlsson MK. Breast cancer-related chronic arm lymphedema is associated with excess adipose and muscle tissue. Lymphat. Res. Biol. 2009;7(1):3–10. doi: 10.1089/lrb.2008.1022. PubMed DOI
Mehrara BJ, Greene AK. Lymphedema and obesity: is there a link? Plast. Reconstr. Surg. 2014;134(1):154e–160e. doi: 10.1097/PRS.0000000000000268. PubMed DOI PMC
Szolnoky G, Dobozy A, Kemeny L. Towards an effective management of chronic lymphedema. Clin. Dermatol. 2014;32(5):685–691. doi: 10.1016/j.clindermatol.2014.04.017. PubMed DOI
Karkkainen MJ, Saaristo A, Jussila L, Karila KA, Lawrence EC, Pajusola K, Bueler H, Eichmann A, Kauppinen R, Kettunen MI, et al. A model for gene therapy of human hereditary lymphedema. Proc. Natl. Acad. Sci. USA. 2001;98(22):12677–12682. doi: 10.1073/pnas.221449198. PubMed DOI PMC
Harvey NL, Srinivasan RS, Dillard ME, Johnson NC, Witte MH, Boyd K, Sleeman MW, Oliver G. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat. Genet. 2005;37(10):1072–1081. doi: 10.1038/ng1642. PubMed DOI
Li Y, Zhu W, Zuo L, Shen B. The role of the mesentery in Crohn's disease: the contributions of nerves, vessels, lymphatics, and fat to the pathogenesis and disease course. Inflamm. Bowel Dis. 2016;22(6):1483–1495. doi: 10.1097/MIB.0000000000000791. PubMed DOI
Nougues J, Reyne Y, Dulor JP. Differentiation of rabbit adipocyte precursors in primary culture. Int J Obes. 1988;12(4):321–333. PubMed
Aschen S, Zampell JC, Elhadad S, Weitman E, De Brot M, Mehrara BJ. Regulation of adipogenesis by lymphatic fluid stasis: part II. Expression of adipose differentiation genes. Plast. Reconstr. Surg. 2012;129(4):838–847. doi: 10.1097/PRS.0b013e3182450b47. PubMed DOI PMC
Zampell JC, Aschen S, Weitman ES, Yan A, Elhadad S, De Brot M, Mehrara BJ. Regulation of adipogenesis by lymphatic fluid stasis: part I Adipogenesis, fibrosis, and inflammation. Plast. Reconstr. Surg. 2012;129(4):825–834. doi: 10.1097/PRS.0b013e3182450b2d. PubMed DOI PMC
Levi B, Glotzbach JP, Sorkin M, Hyun J, Januszyk M, Wan DC, Li S, Nelson ER, Longaker MT, Gurtner GC. Molecular analysis and differentiation capacity of adipose-derived stem cells from lymphedema tissue. Plast. Reconstr. Surg. 2013;132(3):580–589. doi: 10.1097/PRS.0b013e31829ace13. PubMed DOI PMC
Zampell JC, Yan A, Elhadad S, Avraham T, Weitman E, Mehrara BJ. CD4(+) cells regulate fibrosis and lymphangiogenesis in response to lymphatic fluid stasis. PLoS ONE. 2012;7(11):e49940. doi: 10.1371/journal.pone.0049940. PubMed DOI PMC
Rutkowski JM, Moya M, Johannes J, Goldman J, Swartz MA. Secondary lymphedema in the mouse tail: Lymphatic hyperplasia, VEGF-C upregulation, and the protective role of MMP-9. Microvasc. Res. 2006;72(3):161–171. doi: 10.1016/j.mvr.2006.05.009. PubMed DOI PMC
Tashiro K, Feng J, Wu SH, Mashiko T, Kanayama K, Narushima M, Uda H, Miyamoto S, Koshima I, Yoshimura K. Pathological changes of adipose tissue in secondary lymphedema. Br. J. Dermatol. 2016;177:158. doi: 10.1111/bjd.15238. PubMed DOI
Ly CL, Kataru RP, Mehrara BJ. Inflammatory manifestations of lymphedema. Int. J. Mol. Sci. 2017;18(1):171. doi: 10.3390/ijms18010171. PubMed DOI PMC
Rojas-Rodriguez R, Gealekman O, Kruse ME, Rosenthal B, Rao K, Min S, Bellve KD, Lifshitz LM, Corvera S. Adipose tissue angiogenesis assay. Methods Enzymol. 2014;537:75–91. doi: 10.1016/B978-0-12-411619-1.00005-7. PubMed DOI PMC
Schmitz KH, Troxel AB, Dean LT, DeMichele A, Brown JC, Sturgeon K, Zhang Z, Evangelisti M, Spinelli B, Kallan MJ, et al. Effect of home-based exercise and weight loss programs on breast cancer-related lymphedema outcomes among overweight breast cancer survivors: The WISER Survivor Randomized Clinical Trial. JAMA Oncol. 2019;5:1605. doi: 10.1001/jamaoncol.2019.2109. PubMed DOI PMC
Severo JS, Morais JBS, Beserra JB, Dos Santos LR, de Sousa Melo SR, de Sousa GS, de Matos Neto EM, Henriques GS, do Nascimento Marreiro D. Role of zinc in zinc-alpha2-glycoprotein metabolism in obesity: a review of literature. Biol. Trace. Elem. Res. 2020;193(1):81–88. doi: 10.1007/s12011-019-01702-w. PubMed DOI
Haider N, Larose L. Harnessing adipogenesis to prevent obesity. Adipocyte. 2019;8(1):98–104. doi: 10.1080/21623945.2019.1583037. PubMed DOI PMC
Martin EC, Qureshi AT, Llamas CB, Burow ME, King AG, Lee OC, Dasa V, Freitas MA, Forsberg JA, Elster EA, et al. Mirna biogenesis pathway is differentially regulated during adipose derived stromal/stem cell differentiation. Adipocyte. 2018;7(2):96–105. PubMed PMC
Chen Z, Lai TC, Jan YH, Lin FM, Wang WC, Xiao H, Wang YT, Sun W, Cui X, Li YS, et al. Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis. J. Clin. Invest. 2013;123(3):1057–1067. doi: 10.1172/JCI65344. PubMed DOI PMC
Jha SK, Rauniyar K, Jeltsch M. Key molecules in lymphatic development, function, and identification. Ann. Anat. 2018;219:25–34. doi: 10.1016/j.aanat.2018.05.003. PubMed DOI
Conrad C, Niess H, Huss R, Huber S, von Luettichau I, Nelson PJ, Ott HC, Jauch KW, Bruns CJ. Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo. Circulation. 2009;119(2):281–289. doi: 10.1161/CIRCULATIONAHA.108.793208. PubMed DOI
Hamik A, Wang B, Jain MK. Transcriptional regulators of angiogenesis. Arterioscler. Thromb. Vasc. Biol. 2006;26(9):1936–1947. doi: 10.1161/01.ATV.0000232542.42968.e3. PubMed DOI
Moon HE, Ahn MY, Park JA, Min KJ, Kwon YW, Kim KW. Negative regulation of hypoxia inducible factor-1alpha by necdin. FEBS Lett. 2005;579(17):3797–3801. doi: 10.1016/j.febslet.2005.05.072. PubMed DOI
Redondo PAG, Gubert F, Zaverucha-do-Valle C, Dutra TPP, Ayres-Silva JP, Fernandes N, de Souza AAP, Loizidou M, Takiya CM, Rossi MID, et al. Lymphatic vessels in human adipose tissue. Cell Tissue Res. 2020;379(3):511–520. doi: 10.1007/s00441-019-03108-5. PubMed DOI
Souma T, Thomson BR, Heinen S, Carota IA, Yamaguchi S, Onay T, Liu P, Ghosh AK, Li C, Eremina V, et al. Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. Proc. Natl. Acad. Sci. USA. 2018;115(6):1298–1303. doi: 10.1073/pnas.1714446115. PubMed DOI PMC
Halin S, Rudolfsson SH, Doll JA, Crawford SE, Wikstrom P, Bergh A. Pigment epithelium-derived factor stimulates tumor macrophage recruitment and is downregulated by the prostate tumor microenvironment. Neoplasia. 2010;12(4):336–345. doi: 10.1593/neo.92046. PubMed DOI PMC
Yuan Y, Arcucci V, Levy SM, Achen MG. Modulation of immunity by lymphatic dysfunction in lymphedema. Front. Immunol. 2019;10:76. doi: 10.3389/fimmu.2019.00076. PubMed DOI PMC
Ogata F, Fujiu K, Matsumoto S, Nakayama Y, Shibata M, Oike Y, Koshima I, Watabe T, Nagai R, Manabe I. Excess lymphangiogenesis cooperatively induced by macrophages and CD4(+) T cells drives the pathogenesis of lymphedema. J. Invest. Dermatol. 2016;136(3):706–714. doi: 10.1016/j.jid.2015.12.001. PubMed DOI
Borg ML, Andrews ZB, Duh EJ, Zechner R, Meikle PJ, Watt MJ. Pigment epithelium-derived factor regulates lipid metabolism via adipose triglyceride lipase. Diabetes. 2011;60(5):1458–1466. doi: 10.2337/db10-0845. PubMed DOI PMC
Notari L, Baladron V, Aroca-Aguilar JD, Balko N, Heredia R, Meyer C, Notario PM, Saravanamuthu S, Nueda ML, Sanchez-Sanchez F, et al. Identification of a lipase-linked cell membrane receptor for pigment epithelium-derived factor. J. Biol. Chem. 2006;281(49):38022–38037. doi: 10.1074/jbc.M600353200. PubMed DOI
Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, Madeo F. FAT SIGNALS–lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012;15(3):279–291. doi: 10.1016/j.cmet.2011.12.018. PubMed DOI PMC
Miller NE, Michel CC, Nanjee MN, Olszewski WL, Miller IP, Hazell M, Olivecrona G, Sutton P, Humphreys SM, Frayn KN. Secretion of adipokines by human adipose tissue in vivo: partitioning between capillary and lymphatic transport. Am. J. Physiol. Endocrinol. Metab. 2011;301(4):E659–667. doi: 10.1152/ajpendo.00058.2011. PubMed DOI
Wong BW, Wang X, Zecchin A, Thienpont B, Cornelissen I, Kalucka J, Garcia-Caballero M, Missiaen R, Huang H, Bruning U, et al. The role of fatty acid beta-oxidation in lymphangiogenesis. Nature. 2017;542(7639):49–54. doi: 10.1038/nature21028. PubMed DOI
van Hall G, Steensberg A, Sacchetti M, Fischer C, Keller C, Schjerling P, Hiscock N, Moller K, Saltin B, Febbraio MA, et al. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J. Clin. Endocrinol. Metab. 2003;88(7):3005–3010. doi: 10.1210/jc.2002-021687. PubMed DOI
Planck T, Parikh H, Brorson H, Martensson T, Asman P, Groop L, Hallengren B, Lantz M. Gene expression in Graves' ophthalmopathy and arm lymphedema: similarities and differences. Thyroid: Off J. Am. Thyroid Assoc. 2011;21(6):663–674. doi: 10.1089/thy.2010.0217. PubMed DOI
Saupe F, Schwenzer A, Jia Y, Gasser I, Spenle C, Langlois B, Kammerer M, Lefebvre O, Hlushchuk R, Rupp T, et al. Tenascin-C downregulates wnt inhibitor dickkopf-1, promoting tumorigenesis in a neuroendocrine tumor model. Cell Rep. 2013;5(2):482–492. doi: 10.1016/j.celrep.2013.09.014. PubMed DOI
Catalan V, Gomez-Ambrosi J, Rodriguez A, Ramirez B, Rotellar F, Valenti V, Silva C, Gil MJ, Salvador J, Fruhbeck G. Increased tenascin C and Toll-like receptor 4 levels in visceral adipose tissue as a link between inflammation and extracellular matrix remodeling in obesity. J. Clin. Endocrinol. Metab. 2012;97(10):E1880–1889. doi: 10.1210/jc.2012-1670. PubMed DOI PMC
Sawane M, Kajiya K, Kidoya H, Takagi M, Muramatsu F, Takakura N. Apelin inhibits diet-induced obesity by enhancing lymphatic and blood vessel integrity. Diabetes. 2013;62(6):1970–1980. doi: 10.2337/db12-0604. PubMed DOI PMC
Laforest S, Michaud A, Paris G, Pelletier M, Vidal H, Géloën A, Tchernof A. Comparative analysis of three human adipocyte size measurement methods and their relevance for cardiometabolic risk. Obesity. 2017;25(1):122–131. doi: 10.1002/oby.21697. PubMed DOI
Hsieh PN, Fan L, Sweet DR, Jain MK. The Kruppel-like factors and control of energy homeostasis. Endocr. Rev. 2019;40(1):137–152. doi: 10.1210/er.2018-00151. PubMed DOI PMC
Zaragosi LE, Wdziekonski B, Villageois P, Keophiphath M, Maumus M, Tchkonia T, Bourlier V, Mohsen-Kanson T, Ladoux A, Elabd C, et al. Activin a plays a critical role in proliferation and differentiation of human adipose progenitors. Diabetes. 2010;59(10):2513–2521. doi: 10.2337/db10-0013. PubMed DOI PMC
Rossmeislova L, Malisova L, Kracmerova J, Tencerova M, Kovacova Z, Koc M, Siklova-Vitkova M, Viquerie N, Langin D, Stich V. Weight loss improves the adipogenic capacity of human preadipocytes and modulates their secretory profile. Diabetes. 2013;62(6):1990–1995. doi: 10.2337/db12-0986. PubMed DOI PMC
Caso G, McNurlan MA, Mileva I, Zemlyak A, Mynarcik DC, Gelato MC. Peripheral fat loss and decline in adipogenesis in older humans. Metabolism. 2013;62(3):337–340. doi: 10.1016/j.metabol.2012.08.007. PubMed DOI PMC
Tchoukalova Y, Koutsari C, Jensen M. Committed subcutaneous preadipocytes are reduced in human obesity. Diabetologia. 2007;50(1):151–157. doi: 10.1007/s00125-006-0496-9. PubMed DOI
Clement CC, Santambrogio L. The lymph self-antigen repertoire. Front. Immunol. 2013;4:424. doi: 10.3389/fimmu.2013.00424. PubMed DOI PMC
Escobedo N, Proulx ST, Karaman S, Dillard ME, Johnson N, Detmar M, Oliver G. Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice. JCI Insight. 2016;1:2. doi: 10.1172/jci.insight.85096. PubMed DOI PMC
Engin AB. MicroRNA and adipogenesis. Adv. Exp. Med. Biol. 2017;960:489–509. doi: 10.1007/978-3-319-48382-5_21. PubMed DOI
Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C, Rao TN, Winnay JN, Garcia-Martin R, Grinspoon SK, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 2017;542(7642):450–455. doi: 10.1038/nature21365. PubMed DOI PMC
Aldrich MB, Guilliod R, Fife CE, Maus EA, Smith L, Rasmussen JC, Sevick-Muraca EM. Lymphatic abnormalities in the normal contralateral arms of subjects with breast cancer-related lymphedema as assessed by near-infrared fluorescent imaging. Biomed. Opt. Express. 2012;3(6):1256–1265. doi: 10.1364/BOE.3.001256. PubMed DOI PMC
Arner P, Andersson DP, Backdahl J, Dahlman I, Ryden M. Weight Gain and Impaired Glucose Metabolism in Women Are Predicted by Inefficient Subcutaneous Fat Cell Lipolysis. Cell Metab. 2018;28(1):45–54 e43. doi: 10.1016/j.cmet.2018.05.004. PubMed DOI
Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, et al. Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7(10):R100. doi: 10.1186/gb-2006-7-10-r100. PubMed DOI PMC
Čížková T, Štěpán M, Daďová K, Ondrůjová B, Sontáková L, Krauzová E, Matouš M, Koc M, Gojda J, Kračmerová J, et al. Exercise training reduces inflammation of adipose tissue in the elderly: cross-sectional and randomized interventional trial. J. Clin. Endocrinol. Metab. 2020;105:e4510. doi: 10.1210/clinem/dgaa630. PubMed DOI
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9(7):676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Malisova L, Kovacova Z, Koc M, Kracmerova J, Stich V, Rossmeislova L. Ursodeoxycholic acid but not tauroursodeoxycholic acid inhibits proliferation and differentiation of human subcutaneous adipocytes. PLoS ONE. 2013;8(12):e82086. doi: 10.1371/journal.pone.0082086. PubMed DOI PMC
Brezinova M, Cajka T, Oseeva M, Stepan M, Dadova K, Rossmeislova L, Matous M, Siklova M, Rossmeisl M, Kuda O. Exercise training induces insulin-sensitizing PAHSAs in adipose tissue of elderly women. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2019;1865:158576. doi: 10.1016/j.bbalip.2019.158576. PubMed DOI
Chong J, Xia J. Using MetaboAnalyst 4.0 for metabolomics data analysis, interpretation, and integration with other omics data. Methods Mol. Biol. 2020;2104:337–360. doi: 10.1007/978-1-0716-0239-3_17. PubMed DOI