Solanesyl diphosphate synthase, an enzyme of the ubiquinone synthetic pathway, is required throughout the life cycle of Trypanosoma brucei

. 2014 Feb ; 13 (2) : 320-8. [epub] 20131227

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24376001

Ubiquinone 9 (UQ9), the expected product of the long-chain solanesyl diphosphate synthase of Trypanosoma brucei (TbSPPS), has a central role in reoxidation of reducing equivalents in the mitochondrion of T. brucei. The ablation of TbSPPS gene expression by RNA interference increased the generation of reactive oxygen species and reduced cell growth and oxygen consumption. The addition of glycerol to the culture medium exacerbated the phenotype by blocking its endogenous generation and excretion. The participation of TbSPPS in UQ synthesis was further confirmed by growth rescue using UQ with 10 isoprenyl subunits (UQ10). Furthermore, the survival of infected mice was prolonged upon the downregulation of TbSPPS and/or the addition of glycerol to drinking water. TbSPPS is inhibited by 1-[(n-oct-1-ylamino)ethyl] 1,1-bisphosphonic acid, and treatment with this compound was lethal for the cells. The findings that both UQ9 and ATP pools were severely depleted by the drug and that exogenous UQ10 was able to fully rescue growth of the inhibited parasites strongly suggest that TbSPPS and UQ synthesis are the main targets of the drug. These two strategies highlight the importance of TbSPPS for T. brucei, justifying further efforts to validate it as a new drug target.

Zobrazit více v PubMed

Legros D, Ollivier G, Gastellu-Etchegorry M, Paquet C, Burri C, Jannin J, Büscher P. 2002. Treatment of human African trypanosomiasis: present situation and needs for research and development. Lancet Infect. Dis. 2:437–440. 10.1016/S1473-3099(02)00321-3 PubMed DOI

Ohnuma S, Hirooka K, Tsuruoka N, Yano M, Ohto C, Nakane H, Nishino T. 1998. A pathway where polyprenyl diphosphate elongates in prenyltransferase. Insight into a common mechanism of chain length determination of prenyltransferases. J. Biol. Chem. 273:26705–26713 PubMed

Yokoyama K, Lin Y, Stuart KD, Gelb MH. 1997. Prenylation of proteins in Trypanosoma brucei. Mol. Biochem. Parasitol. 87:61–69 PubMed

Field H, Blench I, Croft S, Field MC. 1996. Characterisation of protein isoprenylation in procyclic form Trypanosoma brucei. Mol. Biochem. Parasitol. 82:67–80 PubMed

Montalvetti A, Fernandez A, Sanders JM, Ghosh S, Van Brussel E, Oldfield E, Docampo R. 2003. Farnesyl pyrophosphate synthase is an essential enzyme in Trypanosoma brucei. In vitro RNA interference and in vivo inhibition studies. J. Biol. Chem. 278:17075–17083. 10.1074/jbc.M210467200 PubMed DOI

Yokoyama K, Trobridge P, Buckner FS, Van Voorhis WC, Stuart KD, Gelb MH. 1998. Protein farnesyltransferase from Trypanosoma brucei: A heterodimer of 61- and 65-kDa subunits as a new target for antiparasite therapeutics. J. Biol. Chem. 273:26497–26505 PubMed

Buckner FS, Yokoyama K, Nguyen L, Grewal A, Erdjument-Bromage H, Tempst P, Strickland CL, Xiao L, Van Voorhis WC, Gelb MH. 2000. Cloning, heterologous expression, and distinct substrate specificity of protein farnesyltransferase from Trypanosoma brucei. J. Biol. Chem. 275:21870–21876. 10.1074/jbc.M000975200 PubMed DOI PMC

Garzoni LR, Caldera A, de Meirelles M, de Castro NSL, Docampo R, Meints GA, Oldfield E, Urbina JA. 2004. Selective in vitro effects of the farnesyl pyrophosphate synthase inhibitor risedronate on Trypanosoma cruzi. Int. J. Antimicrob. Agents 23:273–285. 10.1016/j.ijantimicag.2003.07.020 PubMed DOI

Szajnman SH, García Liñares GE, Li ZH, Jiang C, Galizzi M, Bontempi EJ, Ferella M, Moreno SN, Docampo R, Rodriguez JB. 2008. Synthesis and biological evaluation of 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase. Bioorg. Med. Chem. 16:3283–3290. 10.1016/j.bmc.2007.12.010 PubMed DOI PMC

Demoro B, Caruso F, Rossi M, Benítez D, Gonzalez M, Cerecetto H, Parajón-Costa B, Castiglioni J, Galizzi M, Docampo R, Otero L, Gambino D. 2010. Risedronate metal complexes potentially active against Chagas disease. Inorg. Biochem. 104:1252–1258. 10.1016/j.jinorgbio.2010.08.004 PubMed DOI PMC

Garzoni LR, Waghabi MC, Baptista MM, de Castro SL, Meirelles M de, Britto NCC, Docampo R, Oldfield E, Urbina JA. 2004. Antiparasitic activity of risedronate in a murine model of acute Chagas' disease. Int. J. Antimicrob. Agents 23:286–290. 10.1016/j.ijantimicag.2003.07.019 PubMed DOI

Ferella M, Montalvetti A, Rohloff P, Miranda K, Fang J, Reina S, Kawamukai M, Búa J, Nilsson D, Pravia C, Katzin A, Cassera MB, Aslund L, Andersson B, Docampo R, Bontempi EJ. 2006. A solanesyl-diphosphate synthase localizes in glycosomes of Trypanosoma cruzi. J. Biol. Chem. 281:39339–39348. 10.1074/jbc.M607451200 PubMed DOI

Besteiro S, Barrett MP, Rivière L, Bringaud F. 2005. Energy generation in insect stages of Trypanosoma brucei: metabolism in flux. Trends Parasitol. 21:185–191. 10.1016/j.pt.2005.02.008 PubMed DOI

Tielens AGM, van Hellemond JJ. 2009. Surprising variety in energy metabolism within Trypanosomatidae. Trends Parasitol. 25:482–490. 10.1016/j.pt.2009.07.007 PubMed DOI

Ellis JE, Setchell KDR, Kaneshiro ES. 1994. Detection of ubiquinone in parasitic and free-living protozoa, including species devoid of mitochondria. Mol. Biochem. Parasitol. 65:213–224 PubMed

Clarkson AB, Bienen EJ, Pollakis G, Grady RW. 1989. Respiration of bloodstream forms of the parasite Trypanosoma brucei brucei is dependent on a plant-like alternative oxidase. J. Biol. Chem. 264:17770–17776 PubMed

Löw P, Dallner G, Mayor S, Cohen S, Chait BT, Menon AK. 1991. The mevalonate pathway in the bloodstream form of Trypanosoma brucei. Identification of dolichols containing 11 and 12 isoprene residues. J. Biol. Chem. 266:19250–19257 PubMed

Schnaufer A, Clark-Walker JD, Steinberg AG, Stuart K. 2005. The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J. 24:4029–4040. 10.1038/sj.emboj.7600862 PubMed DOI PMC

Sugioka K, Nakano M, Totsune-Nakano H, Minakami H, Tero-Kubota S, Ikegami Y. 1988. Mechanism of O2− generation in reduction and oxidation cycle of ubiquinones in a model of mitochondrial electron transport systems. Biochim. Biophys. Acta 936:377–385 PubMed

Turrens JF, Boveris A. 1980. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191:421–427 PubMed PMC

Morales J, Mogi T, Mineki S, Takashima E, Mineki R, Hirawake H, Sakamoto K, Omura S, Kita K. 2009. Novel mitochondrial complex II isolated from Trypanosoma cruzi is composed of 12 peptides including a heterodimeric Ip subunit. J. Biol. Chem. 284:7255–7263. 10.1074/jbc.M806623200 PubMed DOI PMC

Fang J, Beattie DS. 2002. Rotenone-insensitive NADH dehydrogenase is a potential source of superoxide in procyclic Trypanosoma brucei mitochondria. Mol. Biochem. Parasitol. 123:135–142. 10.1016/S0166-685(02)00139-1 PubMed DOI

Panigrahi AK, Zíková A, Dalley RA, Acestor N, Ogata Y, Anupama A, Myler PJ, Stuart KD. 2008. Mitochondrial complexes in Trypanosoma brucei: a novel complex and a unique oxidoreductase complex. Mol. Cell. Proteomics 7:534–545. 10.1074/mco.M700430-MCP200 PubMed DOI

Opperdoes FR, Michels PA. 2008. Complex I of Trypanosomatidae: does it exist? Trends Parasitol. 24:310–317. 10.1016/j.pt.2008.03.013 PubMed DOI

Verner Z, Čermáková P, Škodová I, Kriegová E, Horváth A, Lukeš J. 2011. Complex I (NADH:ubiquinone oxidoreductase) is active in but non-essential for procyclic Trypanosoma brucei. Mol. Biochem. Parasitol. 175:196–200. 10.1016/j.molbiopara.2010.11.003 PubMed DOI

Surve S, Heestand M, Panicucci B, Schnaufer A, Parsons M. 2012. Enigmatic presence of mitochondrial complex I in Trypanosoma brucei bloodstream forms. Eukaryot. Cell 11:183–193. 10.1128/EC.05282-11 PubMed DOI PMC

Santos-Ocaña C, Córdoba F, Crane FL, Clarke CF, Navas P. 1998. Coenzyme Q6 and iron reduction are responsible for the extracellular ascorbate stabilization at the plasma membrane of Saccharomyces cerevisiae. J. Biol. Chem. 273:8099–8105 PubMed

Lai D-H, Bontempi EJ, Lukeš J. 2012. Trypanosoma brucei solanesyl-diphosphate synthase localizes to the mitochondrion. Mol. Biochem. Parasitol. 183:189–192. 10.1016/j.molbiopara.2012.02.011 PubMed DOI

Chou TC. 2006. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 58:621–681. 10.1124/pr.58.3.10 PubMed DOI

Wang Z, Morris JC, Drew ME, Englund PT. 2000. Inhibition of Trypanosoma brucei gene expression by RNA interference using an integratable vector with opposing T7 promoters. J. Biol. Chem. 275:40174–40179. 10.1074/jbc.M0080405200 PubMed DOI

Wickstead B, Ersfeld K, Gull K. 2002. Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Mol. Biochem. Parasitol. 125:211–216. 10.1016/S0166-6851(02)00238-4 PubMed DOI

Vondrušková E, van den Burg J, Zíková A, Ernst NL, Stuart K, Benne R, Lukeš J. 2005. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei. J. Biol. Chem. 280:2429–2438. 10.1074/jbc.M405933200 PubMed DOI

Hashimi H, Čičová Z, Novotná L, Wen Y-Z, Lukeš J. 2009. Kinetoplastid guide RNA biogenesis is dependent on subunits of the mitochondrial RNA binding complex 1 and mitochondrial RNA polymerase. RNA 15:588–599. 10.1261/rna.1411809 PubMed DOI PMC

Wirtz E, Leal S, Ochatt C, Cross GA. 1999. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol. Biochem. Parasitol. 99:89–101 PubMed

Horváth A, Horáková E, Dunajčíková P, Verner Z, Pravdová E, Šlapetová I, Cuninková L, Lukeš J. 2005. Downregulation of the nuclear-encoded subunits of the complexes III and IV disrupts their respective complexes but not complex I in procyclic Trypanosoma brucei. Mol. Microbiol. 58:116–130. 10.1111/j.1365-2958.2005.04813.x PubMed DOI

Lai D-H, Hashimi H, Lun ZR, Ayala FJ, Lukeš J. 2008. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc. Natl. Acad. Sci. U. S. A. 105:1999–2004. 10.1073/pnas.0711799105 PubMed DOI PMC

Koyama T. 1999. Molecular analysis of prenyl chain elongating enzymes. Biosci. Biotechnol. Biochem. 63:1671–1676 PubMed

Chen A, Kroon PA, Poulter D. 1994. Isoprenyl diphosphate synthases: protein sequence comparisons, a phylogenetic tree, and predictions of secondary structure. Prot. Sci. 3:600–607 PubMed PMC

Liang P-H, Ko T-P, Wang AH. 2002. Structure, mechanism and function of prenyltransferases. Eur. J. Biochem. 269:3339–3354. 10.1046/j.1432-1033.2002.03014.x PubMed DOI

Krakow JL, Wang CC. 1990. Purification and characterization of glycerol kinase from Trypanosoma brucei. Mol. Biochem. Parasitol. 43:17–25 PubMed

Hammond DJ, Bowman IB. 1980. Studies on glycerol kinase and its role in ATP synthesis in Trypanosoma brucei. Mol. Biochem. Parasitol. 2:77–91 PubMed

Bus Gibson JS JE. 1984. Paraquat: model for oxidant-initiated toxicity. Environ. Health Perspect. 55:37–46. 10.1289/ehp.845537 PubMed DOI PMC

Loftsson T, Duchêne D. 2007. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329:1–11. 10.1016/j.ijpharm.2006.10.044 PubMed DOI

Robergs RA, Griffin SE. 1998. Glycerol. Biochemistry, pharmacokinetics and clinical and practical applications. Sports Med. 26:145–167. 10.2165/00007256-199826030-00002 PubMed DOI

Yabu Y, Minagawa N, Kita K, Nagai K, Honma M, Sakajo S, Koide T, Ohta N, Yoshimoto A. 1998. Oral and intraperitoneal treatment of Trypanosoma brucei brucei with a combination of ascofuranone and glycerol in mice. Parasitol. Int. 47:131–137

Boveris A, Oshino N, Chance B. 1972. The cellular production of hydrogen peroxide. Biochem. J. 128:617–630 PubMed PMC

Urbina JA, Moreno B, Vierkotter S, Oldfield E, Payares G, Sanoja C, Bailey BN, Yan W, Scott DA, Moreno SN, Docampo R. 1999. Trypanosoma cruzi contains major pyrophosphate stores, and its growth in vitro and in vivo is blocked by pyrophosphate analogs. J. Biol. Chem. 274:33609–33615 PubMed

Dufernez F, Yernaux C, Gerbod D, Noël C, Chauvenet M, Wintjens R, Edgcomb VP, Capron M, Opperdoes FR, Viscogliosi E. 2006. The presence of four iron-containing superoxide dismutase isozymes in trypanosomatidae: characterization, subcellular localization, and phylogenetic origin in Trypanosoma brucei. Free Radic. Biol. Med. 40:210–225. 10.1016/j.freeradbiomed.2005.06.021 PubMed DOI

Wilkinson SR, Prathalingam SR, Taylor MC, Ahmed A, Horn D, Kelly JM. 2006. Functional characterisation of the iron superoxide dismutase gene repertoire in Trypanosoma brucei. Free Radic. Biol. Med. 40:198–209. 10.1016/j.freeradbiomed.2005.06.022 PubMed DOI

Thelin A, Schedin S, Dallner G. 1992. Half-life of ubiquinone-9 in rat tissues. FEBS Lett. 313:118–120. 10.1016/0014-5793(92)81425-L PubMed DOI

Greenberg S, Frishman WH. 1990. Co-enzyme Q10: a new drug for cardiovascular disease. J. Clin. Pharmacol. 30:596–608 PubMed

Åstrand I-M, Fries E, Chojnacki T, Dallner G. 1986. Inhibition of dolichyl phosphate biosynthesis by compactin in cultured rat hepatocytes. Eur. J. Biochem. 155:447–452 PubMed

Fuchs AG, Echeverría CI, Pérez Rojo FG, Prieto González EA, Roldán EJA. 2013. Proline modulates the effect of bisphosphonate on calcium levels and adenosine: triphosphate production in cell lines derived from bovine Echinococcus granulosus protoscoleces. J. Helminthol. 7:1–9 PubMed

Bochud-Allemann N, Schneider A. 2002. Mitochondrial substrate level phosphorylation is essential for growth of procyclic Trypanosoma brucei. J. Biol. Chem. 277:32849–32854. 10.1074/jbc.M205776200 PubMed DOI

Coustou V, Besteiro S, Biran M, Diolez P, Bouchaud V, Voisin P, Michels PA, Canioni P, Baltz T, Bringaud F. 2003. ATP generation in the Trypanosoma brucei procyclic form: cytosolic substrate level is essential, but not oxidative phosphorylation. J. Biol. Chem. 278:49625–49635. 10.1074/jbc.M307872200 PubMed DOI

Opperdoes FR. 1987. Compartmentation of carbohydrate metabolism in trypanosomes. Annu. Rev. Microbiol. 41:127–151. 10.1146/annurev.mi.41.100187.001015 PubMed DOI

Santos-Ocaña C, Do TQ, Padilla S, Navas P, Clarke CF. 2002. Uptake of exogenous coenzyme Q and transport to mitochondria is required for bc1 complex stability in yeast coq mutants. J. Biol. Chem. 277:10973–10981. 10.1074/jbc.M112222200 PubMed DOI

Turunen M, Olsson J, Dallner G. 2004. Metabolism and function of coenzyme Q. Biochim. Biophys. Acta 1660:171–199. 10.1016/j.bbamem.2003.11.012 PubMed DOI

Coppens I, Baudhuin P, Opperdoes FR, Courtoy PJ. 1988. Receptors for the host low density lipoproteins on the hemoflagellate Trypanosoma brucei: purification and involvement in the growth of the parasite. Proc. Natl. Acad. Sci. U. S. A. 85:6753–6757 PubMed PMC

Liu J, Qiao X, Du D, Lee MG. 2000. Receptor-mediated endocytosis in the procyclic form of Trypanosoma brucei. J. Biol. Chem. 275:12032–12040. 10.1074/jbc.275.16.12032 PubMed DOI

Green HP, Del Pilar Molina Portela M, St Jean EN, Lugli EB, Raper J. 2003. Evidence for a Trypanosoma brucei lipoprotein scavenger receptor. J. Biol. Chem. 278:422–427. 10.1074/jbc.M207215200 PubMed DOI

Coppens I, Bastin P, Levade T, Courtoy PJ. 1995. Activity, pharmacological inhibition and biological regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Trypanosoma brucei. Mol. Biochem. Parasitol. 69:29–40 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...