In vitro permeation of micronized and nanonized alaptide from semisolid formulations
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24453907
PubMed Central
PMC3881672
DOI
10.1155/2013/787283
Knihovny.cz E-zdroje
- MeSH
- cyklické peptidy * chemie farmakologie MeSH
- kůže * MeSH
- membrány umělé * MeSH
- nanočástice chemie MeSH
- neuropeptidy * chemie farmakologie MeSH
- permeabilita MeSH
- prasata MeSH
- umělá kůže * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyclo(alanine-(1-amino-1-cyclopentane)carbonyl) MeSH Prohlížeč
- cyklické peptidy * MeSH
- membrány umělé * MeSH
- neuropeptidy * MeSH
This study is focused on in vitro permeation of the original Czech compound, a skin/mucosa tissue regeneration promoter, known under the international nonproprietary name "alaptide," in micronized and nanonized forms. Alaptide showed a great potential for local applications for treatment and/or regeneration of the injured skin. The above mentioned technological modifications influence the permeation of alaptide through artificial or biological membranes, such as PAMPA or skin. The permeation of micronized and nanonized form of alaptide formulated to various semisolid pharmaceutical compositions through full-thickness pig ear skin using a Franz cell has been investigated in detail. In general, it can be concluded that the nanonized alaptide permeated through the skin less than the micronized form; different observations were made for permeation through the PAMPA system, where the micronized form showed lower permeation than the nanonized alaptide.
Zobrazit více v PubMed
De Souza Russo EM, Russo VFT. Inventors; Cristalia Produtos Quimicos e Farmaceuticos, Ltd., assignee, “Pharmaceutical compositions of topic use, applied in treatment of skin and/or mucous injuries; use of compositions in treatment of skin and/or mucous injuries and use of compounds in treatment of skin and/or mucous injuries”, WO 2002083086 A1, 2002.
Hashimoto K, Nakata K, Sakanaka M, Tanaka J. Inventors; Japan Science and Technology Corporation, assignee, “Skin tissue regeneration promoters comprising ginsenoside Rb1”, EP1295893 A1, 2003.
Choi SG, Baek EJ, Davaa E, et al. Topical treatment of the buccal mucosa and wounded skin in rats with a triamcinolone acetonide-loaded hydrogel prepared using an electron beam. International Journal of Pharmaceutics. 2013;447:102–108. PubMed
Kasafirek E, Sturc A, Roubalova A. Linear tri- and tetrapeptides acting as prodrugs. Collection of Czechoslovak Chemical Communications. 1992;57:179–187.
Kasafirek E, Rybak M, Krejci I, Sturc A, Krepela E, Sedo A. Two-step generation of spirocyclic dipeptides from linear peptide ethyl ester precursors. Life Sciences. 1992;50(3):187–193. PubMed
Celis ME, Taleisnik S, Walter R. Regulation of formation and proposed structure of the factor inhibiting the release of melanocyte-stimulating hormone. Proceedings of the National Academy of Sciences of the United States of America. 1971;68(7):1428–1433. PubMed PMC
Petersson M, Uvnäs-Moberg K. Prolyl-leucyl-glycinamide shares some effects with oxytocin but decreases oxytocin levels. Physiology and Behavior. 2004;83(3):475–481. PubMed
Radl S, Kasafirek E, Krejci I. Alaptide. Drugs of the Future. 1990;15:445–447.
Jampílek J, Opatrilova R, Rezacova A, Oktabec Z, Dohnal J. Inventors; Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, assignee, “Alaptide: Methods of effecting its solubility, membrane permeation and pharmaceutical compositions for human and veterinary applications”, PTC/CZ2012/000074, 2012.
Douša M, Lemr K. Liquid chromatographic method for enantiopurity control of alaptide using polysaccharide stationary phases. Journal of Separation Science. 2011;34(12):1402–1406. PubMed
Maixner J, Rohlíček J, Kratochvíl B, Šturc A. X-ray powder diffraction data for alaptide, 8(S)-methyl-6,9-diazaspiro/4,5/decane-7,10-dione or cyclo(l-alanyl-1-amino-1-cyclopentan carbonyl), cyclo(l-Ala-Acp) Powder Diffraction. 2009;24:32–34.
Julinek O, Setnicka V, Rezacova A, Dohnal J, Vosatka V, Urbanova M. Product of alaptide synthesis: determination of the absolute configuration. Journal of Pharmaceutical and Biomedical Analysis. 2010;53:958–961. PubMed
Burns T, Breathnach S, Cox N, Griffiths C. Rook's Textbook of Dermatology. 7th edition. Oxford, UK: Blackwell Publishing; 2004.
James W, Berger T, Elston D. Andrews' Diseases of the Skin: Clinical Dermatology. 10th edition. Philadelphia, PA, USA: Saunders; 2006.
Watt FM. The epidermal keratinocyte. BioEssays. 1988;8(5):163–167. PubMed
Vanzura J, Kosar K, Kasafirek E. Inhibition of proliferative activity by cyclic dipeptides: spirocyclic derivatives of 1-aminocyclopentanecarboxylic acid. Toxicology Letters. 1986;31(3):189–193. PubMed
Lapka R. Pharmacokinetics and brain entry of alaptide, a novel nootropic agent, in mice, rats and rabbits. Journal of Pharmacy and Pharmacology. 1991;43(12):874–876. PubMed
Kosar K, Vanzura J. Embryotoxicity of L-prolyl-L-leucyl-glycinamide, cyclo(1-amino-cyclopentanecarbonyl-alanyl) and cyclo(glycyl-leucyl), new potential neuropeptides in chick embryos. Pharmazie. 1988;43(10):715–716. PubMed
Bioveta-Alaptid veterinary ointment.cz, http://www.bioveta.cz/en/veterinary-division/products/new-products-for-dogs-and-cats/alaptid-veterinary-ointment.html.
Schneider M, Stracke F, Hansen S, Schaefer UF. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol. 2009;1:197–206. PubMed PMC
Baroli B. Penetration of nanoparticles and nanomaterials in the skin: fiction or reality? Journal of Pharmaceutical Sciences. 2010;99(1):21–50. PubMed
Prow TW, Grice JE, Lin LL, et al. Nanoparticles and microparticles for skin drug delivery. Advanced Drug Delivery Reviews. 2011;63(6):470–491. PubMed
Campbell CSJ, Contreras-Rojas LR, Delgado-Charro MB, Guy RH. Objective assessment of nanoparticle disposition in mammalian skin after topical exposure. Journal of Controlled Release. 2012;162:201–207. PubMed
Kimura E, Kawano Y, Todo H, Ikarashi Y, Sugibayashi K. Measurement of skin permeation/penetration of nanoparticles for their safety evaluation. Biological & Pharmaceutical Bulletin. 2012;35:1476–1486. PubMed
Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. Journal of Medicinal Chemistry. 1998;41(7):1007–1010. PubMed
Avdeef A, Tsinman O. PAMPA—a drug absorption in vitro model: 13. Chemical selectivity due to membrane hydrogen bonding: in combo comparisons of HDM-, DOPC-, and DS-PAMPA models. European Journal of Pharmaceutical Sciences. 2006;28(1-2):43–50. PubMed
Tam KY, Velicky M, Dryfe RAW. The importance of and different approaches to permeability determination. In: Mandic Z, editor. Physico-Chemical Methods in Drug Discovery and Development. Zagreb, Croatia: IAPC; 2012. pp. 121–164.
Franz TJ. Percutaneous absorption. On the relevance of in vitro data. Journal of Investigative Dermatology. 1975;64(3):190–195. PubMed
Jampilek J, Brychtova K. Azone analogues: classification, design, and transdermal penetration principles. Medical Research Review. 2012;32:907–947. PubMed
Jampilek J. Transdermal application of drugs and techniques affecting skin barrier. Journal of Bioequivalence & Bioavailability. 2013;5:233–235.
Jacobi U, Kaiser M, Toll R, et al. Porcine ear skin: an in vitro model for human skin. Skin Research and Technology. 2007;13(1):19–24. PubMed
Herkenne C, Naik A, Kalia YN, Hadgraft J, Guy RH. Pig ear skin ex vivo as a model for in vivo dermatopharmacokinetic studies in man. Pharmaceutical Research. 2006;23(8):1850–1856. PubMed
Meyer W, Schwarz R, Neurand K. The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig. Current Problems in Dermatology. 1978;7:39–52. PubMed
Wu H, Ramachandran C, Weiner ND, Roessler BJ. Topical transport of hydrophilic compounds using water-in-oil nanoemulsions. International Journal of Pharmaceutics. 2001;220(1-2):63–75. PubMed
Akhtar N, Rehman MU, Khan HMS, Rasool F, Saeed T, Murtaza G. Penetration enhancing effect of polysorbate 20 and 80 on the in vitro percutaneous absorption of L-ascorbic acid. Tropical Journal of Pharmaceutical Research. 2011;10(3):281–288.
Panigrahi L, Pattnaik S, Ghosal SK. The effect of pH and organic ester penetration enhancers on skin permeation kinetics of terbutaline sulfate from pseudolatex-type transdermal delivery systems through mouse and human cadaver skins. AAPS PharmSciTech. 2005;6(2):E167–E173. PubMed PMC
Huang CT, Tsai MJ, Lin YH, et al. Effect of microemulsions on transdermal delivery of citalopram: optimization studies using mixture design and response surface methodology. International Journal of Nanomedicine. 2013;2013:2295–2304. PubMed PMC
Rhee Y-S, Choi J-G, Park E-S, Chi S-C. Transdermal delivery of ketoprofen using microemulsions. International Journal of Pharmaceutics. 2001;228(1-2):161–170. PubMed
Kennish L, Reidenberg B. A review of the effect of occlusive dressings on lamellar bodies in the stratum corneum and relevance to transdermal absorption. Dermatology Online Journal. 2005;11(3):p. 7. PubMed
Bhushan B. Handbook of Nanotechnology. Berlin, Germany: Springer; 2004.
Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2:MR17–MR71. PubMed
Corredor E, Testillano PS, Coronado M-J, et al. Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biology. 2009;9, article 45 PubMed PMC
Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6(1):12–21. PubMed
Watkinson AC, Bunge AL, Hadgraft J, Lane ME. Nanoparticles do not penetrate human skin-a theoretical perspective. Pharmaceutical Research. 2013;30:1943–1946. PubMed
Barratt MD. Quantitative structure-activity relationships for skin permeability. Toxicology in Vitro. 1995;9(1):27–37. PubMed