Lucifensins, the Insect Defensins of Biomedical Importance: The Story behind Maggot Therapy

. 2014 Feb 27 ; 7 (3) : 251-64. [epub] 20140227

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid24583934

Defensins are the most widespread antimicrobial peptides characterised in insects. These cyclic peptides, 4-6 kDa in size, are folded into α-helical/β-sheet mixed structures and have a common conserved motif of three intramolecular disulfide bridges with a Cys1-Cys4, Cys2-Cys5 and Cys3-Cys6 connectivity. They have the ability to kill especially Gram-positive bacteria and some fungi, but Gram-negative bacteria are more resistant against them. Among them are the medicinally important compounds lucifensin and lucifensin II, which have recently been identified in the medicinal larvae of the blowflies Lucilia sericata and Lucilia cuprina, respectively. These defensins contribute to wound healing during a procedure known as maggot debridement therapy (MDT) which is routinely used at hospitals worldwide. Here we discuss the decades-long story of the effort to isolate and characterise these two defensins from the bodies of medicinal larvae or from their secretions/excretions. Furthermore, our previous studies showed that the free-range larvae of L. sericata acutely eliminated most of the Gram-positive strains of bacteria and some Gram-negative strains in patients with infected diabetic foot ulcers, but MDT was ineffective during the healing of wounds infected with Pseudomonas sp. and Acinetobacter sp. The bactericidal role of lucifensins secreted into the infected wound by larvae during MDT and its ability to enhance host immunity by functioning as immunomodulator is also discussed.

Zobrazit více v PubMed

Wang G., Li X., Wang Z. APD2: The updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res. 2009;37:D933–D937. doi: 10.1093/nar/gkn823. PubMed DOI PMC

Bulet P., Hetru C., Dimarcq J.-L., Hoffmann D. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 1999;23:329–344. doi: 10.1016/S0145-305X(99)00015-4. PubMed DOI

Brown K.L., Hancock R.E.W. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol. 2006;18:24–30. doi: 10.1016/j.coi.2005.11.004. PubMed DOI

Tossi A., Sandri L., Giangaspero A. Amphipathic, α-helical antimicrobial peptides. Biopolymers. 2000;55:4–30. doi: 10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M. PubMed DOI

Toke O. Antimicrobial peptides: New candidates in the fight against bacterial infections. Biopolymers. 2005;80:717–735. doi: 10.1002/bip.20286. PubMed DOI

Yeaman M.R., Yount N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003;55:27–55. doi: 10.1124/pr.55.1.2. PubMed DOI

Giuliani A., Pirri G., Nicoletto S.F. Antimicrobial peptides: An overview of a promising class of therapeutics. Centr. Eur. J. Biol. 2007;2:1–33. doi: 10.2478/s11535-007-0010-5. DOI

Čeřovský V., Ždárek J., Fučík V., Monincová L., Voburka Z., Bém R. Lucifensin, the long-sought antimicrobial factor of medicinal maggots of the blowfly Lucilia sericata. Cell. Mol. Life Sci. 2010;67:455–466. doi: 10.1007/s00018-009-0194-0. PubMed DOI PMC

El Shazely B., Veverka V., Fučík V., Voburka Z., Žďárek J., Čeřovský V. Lucifensin II, a defensin of medicinal maggots of the blowfly Lucilia cuprina (Diptera: Calliphoridae) J. Med. Entomol. 2013;50:571–578. doi: 10.1603/ME12208. PubMed DOI

Hoffmann J.A., Hetru C. Insect defensins: inducible antimicrobial peptides. Immunol. Today. 1992;13:411–415. doi: 10.1016/0167-5699(92)90092-L. PubMed DOI

Bulet P., Stöcklin R. Insect antimicrobial peptides: Structures, properties and gene regulation. Protein Peptide Lett. 2005;12:3–11. doi: 10.2174/0929866053406011. PubMed DOI

Sherman R.A., Hall M.J.R., Thomas S. Medicinal maggots: An ancient remedy for some contemporary afflictions. Annu. Rev. Entomol. 2000;45:55–81. doi: 10.1146/annurev.ento.45.1.55. PubMed DOI

Nigam Y., Dudley E., Bexfield A., Bond A.E., Evans J., James J. The physiology of wound healing by the medicinal maggot, Lucilia sericata. Adv. Insect Physiol. 2010;39:39–81. doi: 10.1016/B978-0-12-381387-9.00002-6. DOI

Matsuyama K., Natori S. Purification of three antibacterial proteins from the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina. J. Biol. Chem. 1988;263:17112–17116. PubMed

Lambert J., Keppi E., Dimarcq J.-L., Wicker C., Reichhart J.-M., Dunbar B., Lepage P., Van Dorsselaer A., Hoffmann J., Forthergill J., Hoffmann D. Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc. Natl. Acad. Sci. USA. 1989;86:262–266. doi: 10.1073/pnas.86.1.262. PubMed DOI PMC

Lehane M.J., Wu D., Lehane S.M. Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. Proc. Natl. Acad. Sci.USA. 1997;94:11502–11507. doi: 10.1073/pnas.94.21.11502. PubMed DOI PMC

Fujiwara S., Imai J., Fujiwara M., Yaeshima T., Kawashima T., Kobayashi K. A potent antimicrobial protein in royal jelly. Purification and determination of the primary structure of royalisin. J. Biol. Chem. 1990;265:11333–11337. PubMed

Rees J.A., Moniatte M., Bulet P. Novel antimicrobial peptides isolated from a European bumblebee, Bombus pascuorum (Hymenoptera, Apoidea) Insect. Biochem. Molec. Biol. 1997;27:413–422. doi: 10.1016/S0965-1748(97)00013-1. PubMed DOI

Hanzawa H., Shimada I., Kuzuhara T., Komano H., Kohda D., Inagaki F., Natori S., Arata Y. 1H nuclear magnetic resonance study of the solution conformation of an antibacterial protein, sapecin. FEBS Lett. 1990;269:413–420. doi: 10.1016/0014-5793(90)81206-4. PubMed DOI

Cornet B., Bonmatin J.-M., Hetru C., Hoffmann J.A., Ptak M., Vovelle F. Refined three-dimensional solution structure of insect defensin A. Structure. 1995;3:435–448. doi: 10.1016/S0969-2126(01)00177-0. PubMed DOI

Landon C., Sodano P., Hetru C., Hoffmann J., Ptak M. Solution structure of drosomycin, the first inducible antifungal protein from insects. Protein Sci. 1997;6:1878–1884. doi: 10.1002/pro.5560060908. PubMed DOI PMC

Mumcuoglu K. Y., Miller J., Mumcuoglu M., Friger M., Tarshis M. Destruction of bacteria in the digestive tract of the maggot of Lucilia sericata (Diptera: Calliphoridae) J. Med. Entomol. 2001;38:161–166. doi: 10.1603/0022-2585-38.2.161. PubMed DOI

Parnés A., Lagan K. M. Larval therapy in wound management: A review. Int. J. Clin. Pract. 2007;61:488–493. doi: 10.1111/j.1742-1241.2006.01238.x. PubMed DOI

Baer W.S. The treatment of chronic osteomyelitis with the maggots (larva of the blowfly) J. Bone Joint. Surg. 1931;13:438.

Simons S.W. A bactericidal principle in excretions of surgical maggots which destroys important etiological agents of pyogenic infections. J. Bacteriol. 1935;30:253–267. PubMed PMC

Pavillard E.R., Wright E.A. An antibiotic from maggots. Nature. 1957;180:916–917. doi: 10.1038/180916b0. PubMed DOI

Huberman L., Gollop N., Mumcuoglu K.Y., Breuer E., Bhusare S.R., Shai Y., Galun R. Antibacterial substances of low molecular weight isolated from the blowfly, Lucilia sericata. Med. Vet. Entomol. 2007;21:127–131. doi: 10.1111/j.1365-2915.2007.00668.x. PubMed DOI

Thomas S., Andrews A.M., Hay N.P., Bourgoise S. The anti-microbial activity of maggot secretions: results of a preliminary study. J. Tissue Viability. 1999;9:127–132. PubMed

Bexfield A., Nigam Y., Thomas S., Ratcliffe N.A. Detection and partial characterisation of two antibacterial factors from the excretions/secretions of the medicinal maggot Lucilia sericata and their activity against methicillin-resistant Staphylococcus aureus (MRSA) Microbes Infect. 2004;6:1297–1304. doi: 10.1016/j.micinf.2004.08.011. PubMed DOI

Bexfield A., Bond A.E., Roberts E.C., Dudley E., Nigam Y., Thomas S., Newton R.P., Ratcliffe N.A. The antibacterial activity against MRSA strains and other bacteria of a <500 Da fraction from maggot excretions/secretions of Lucilia sericata (Diptera: Calliphoridae) Microbes Infect. 2008;10:325–333. doi: 10.1016/j.micinf.2007.12.011. PubMed DOI

Jaklič D., Lapanje A., Zupančič K., Smrke D., Gunde-Cimerman N. Selective antimicrobial activity of maggots against pathogenic bacteria. J. Med. Microbiol. 2008;57:617–625. doi: 10.1099/jmm.0.47515-0. PubMed DOI

Kerridge A., Lappin-Scott H., Stevens J.R. Antibacterial properties of larval secretions of the blowfly, Lucilia sericata. Med. Vet. Entomol. 2005;19:333–337. doi: 10.1111/j.1365-2915.2005.00577.x. PubMed DOI

Zhang Z., Wang J., Zhang B., Liu H., Song W., He J., Lv D., Wang S., Xu X. Activity of antimicrobial protein from maggots against Staphylococcus aureus in vitro and in vivo. Int. J. Mol. Med. 2013;31:1159–1165. PubMed

Kruglikova A.A., Chernysh S.I. Antimicrobial compounds from the excretions of surgical maggots, Lucilia sericata (Meigen) (Diptera, Calliphoridae) Entomol. Rev. 2011;91:813–819. doi: 10.1134/S0013873811070013. DOI

Čeřovský V., Slaninová J., Fučík V., Monincová L., Bednárová L., Maloň P., Štokrová J. Lucifensin, a novel insect defensin of medicinal maggots: Synthesis and structural study. ChemBioChem. 2011;12:1352–1361. doi: 10.1002/cbic.201100066. PubMed DOI

Nygaard M.K.E., Andersen A.S., Kristensen H-H., Krogfelt K.A., Fojan P., Wimmer R. The insect defensin lucifensin from Lucilia sericata. J. Biomol. NMR. 2012;52:277–282. doi: 10.1007/s10858-012-9608-7. PubMed DOI

Takeuchi K., Takahashi H., Sugai M., Iwai H., Kohno T., Sekimizu K., Natori S., Shimada I. Channel-forming membrane permeabilization by an antimicrobial protein, sapecin. J. Biol. Chem. 2004;279:4981–4987. PubMed

Pymol. [(accessed on 12 February 2014)]. Available online: http://www.pymol.org/

Cociancich S., Bulet P., Hetru C., Hoffmann J.A. The inducible antimicrobial peptides of insects. Parasitol. Today. 1994;10:132–138. doi: 10.1016/0169-4758(94)90260-7. PubMed DOI

Altincicek B., Vilcinskas A. Septic injury-inducible genes in medicinal maggots of the green blow fly Lucilia sericata. Insect Mol. Biol. 2009;18:119–125. doi: 10.1111/j.1365-2583.2008.00856.x. PubMed DOI

Andersen A.S., Sandvang D., Schnorr K.M., Kruse T., Neve S., Joergensen B., Karlsmark T., Krogfelt K.A. A novel approach to the antimicrobial activity of maggot debridement therapy. J. Antimicrob. Chemother. 2010;65:1646–1654. doi: 10.1093/jac/dkq165. PubMed DOI PMC

Valachová I., Bohová J., Pálošová Z., Takáč P., Kozánek M., Majtán J. Expression of lucifensin in Lucilia sericata medicinal maggots in infected environments. Cell Tissue Res. 2013;353:165–171. doi: 10.1007/s00441-013-1626-6. PubMed DOI

Bém R., Jirkovská A., Fejfarová V., Dubský M., Skibová J., Čeřovský V. Acute antimicrobial effect of maggot therapy on diabetic foot ulcer infection as a basis for identification of antimicrobial peptides from maggots (Abstract) Diabetologia. 2010;53:56.

Bowling F.L., Salgami E.V., Boulton A.J. Larval therapy: a novel treatment in eliminating methicillin-resistant Staphylococcus aureus from diabetic foot ulcers. Diabetes Care. 2007;30:370–371. doi: 10.2337/dc06-2348. PubMed DOI

Harder J., Meyer-Hoffert U., Wehkamp K., Schwichtenberg L., Schroder J.M. Differential gene induction of human beta-defensins (hBD-1, -2, -3, and -4) in keratinocytes is inhibited by retinoic acid. J. Invest. Dermatol. 2004;123:522–529. doi: 10.1111/j.0022-202X.2004.23234.x. PubMed DOI

Khanolkar M.P., Bain S.C., Stephens J.W. The diabetic foot. QJM. 2008;101:685–695. doi: 10.1093/qjmed/hcn027. PubMed DOI

Lobmann R., Schultz G., Lehnert H. Proteases and the diabetic foot syndrome: mechanisms and therapeutic implications. Diabetes Care. 2005;28:461–471. doi: 10.2337/diacare.28.2.461. PubMed DOI

Rivas-Santiago B., Trujillo V., Montoya A., Gonzalez-Curiel I., Castaneda-Delgado J., Cardenas A., Rincon K., Hernandez M.L., Hernandez-Pando R. Expression of antimicrobial peptides in diabetic foot ulcer. J. Dermatol. Sci. 2012;65:19–26. doi: 10.1016/j.jdermsci.2011.09.013. PubMed DOI

Van der Plas M.J.A, van der Does A.M, Baldry M., Dogterom-Ballering H.C.M, van Gulpen C, van Dissel J.T., Nibbering P.H, Jukema G.N. Maggot excretions/secretions inhibit multiple neutrophil pro-inflammatory responses. Microbes Infect. 2007;9:507–514. doi: 10.1016/j.micinf.2007.01.008. PubMed DOI

Horobin A.J., Shakesheff K.M., Pritchard D.I. Promotion of human dermal fibroblast migration, matrix remodeling and modification of fibroblast morphology within a novel 3D model by Lucilia sericata larval secretions. J. Invest. Dermatol. 2006;126:1410–1418. doi: 10.1038/sj.jid.5700256. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

TIME management by medicinal larvae

. 2016 Aug ; 13 (4) : 475-84. [epub] 20150715

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...