TIME management by medicinal larvae

. 2016 Aug ; 13 (4) : 475-84. [epub] 20150715

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid26179750

Wound bed preparation (WBP) is an integral part of the care programme for chronic wounds. The acronym TIME is used in the context of WBP and describes four barriers to healing in chronic wounds; namely, dead Tissue, Infection and inflammation, Moisture imbalance and a non-migrating Edge. Larval debridement therapy (LDT) stems from observations that larvae of the blowfly Lucilia sericata clean wounds of debris. Subsequent clinical studies have proven debriding efficacy, which is likely to occur as a result of enzymatically active alimentary products released by the insect. The antimicrobial, anti-inflammatory and wound healing activities of LDT have also been investigated, predominantly in a pre-clinical context. This review summarises the findings of investigations into the molecular mechanisms of LDT and places these in context with the clinical concept of WBP and TIME. It is clear from these findings that biotherapy with L. sericata conforms with TIME, through the enzymatic removal of dead tissue and its associated biofilm, coupled with the secretion of defined antimicrobial peptides. This biotherapeutic impact on the wound serves to reduce inflammation, with an associated capacity for an indirect effect on moisture imbalance. Furthermore, larval serine proteinases have the capacity to alter fibroblast behaviour in a manner conducive to the formation of granulation tissue.

Zobrazit více v PubMed

Falanga V. Classifications for wound bed preparation and stimulation of chronic wounds. Wound Repair Regen 2000;8:347–52. PubMed

Sibbald RG, Williamson D, Orstedt HL, Campbell K, Keast D, Krasner D, Sibbald D. Preparing the wound bed – debridement, bacterial balance, and moisture balance. Ostomy Wound Manage 2000;46:14–35. PubMed

Schultz GS, Sibbald RG, Falanga V, Ayello EA, Dowsett C, Harding K, Romanelli M, Stacey MC, Teot L, Vanscheidt W. Wound bed preparation: a systematic approach to wound management. Wound Repair Regen 2003;11:S1–28. PubMed

Enoch S, Harding K. Wound bed preparation: the science behind the removal of barriers to healing. Wounds 2003;15:213–29.

Sibbald RG, Orsted H, Schultz GS, Coutts P, Keast D. Preparing the wound bed 2003: focus on infection and inflammation. Ostomy Wound Manage 2003;49:24–51. PubMed

Dowsett C, Ayello E. TIME principles of chronic wound bed preparation and treatment. Br J Nurs 2004;13:S16–23. PubMed

European Wound Management Association (EWMA) . Wound bed preparation in practice: position document. Medical education partnership. 2004. URL http://ewma.org/fileadmin/user_upload/EWMA/pdf/Position_Documents/2004/pos_doc_English_final_04.pdf [accessed on 9 April 2015]

Sibbald RG, Goodman L, Woo KY, Krasner DL, Smart H, Tariq G, Ayello EA, Burrell RE, Keast DH, Mayer D, Norton L, Salcido RS. Special considerations in wound bed preparation: an update. Adv Skin Wound Care 2011;24:415–36. PubMed

Leaper DJ, Schultz G, Carville K, Fletcher J, Swanson T, Drake R. Extending the TIME concept: what have we learned in the past 10 years? Int Wound J 2012;9:1–19. PubMed PMC

Goldstein H. Maggots in the treatment of wound and bone infections. J Bone Joint Surg Am 1931;13:476–8.

Fleischmann W, Grassberger M, Sherman R. Maggot therapy: a handbook of maggot‐assisted wound healing. Stuttgart: Thieme Verlag, 2004.

Thomas S. Surgical dressings and wound management. Cardiff: Medetec Publications, 2010.

Baer WS. The treatment of chronic osteomyelitis with the maggot (larvae of the blow fly). J Bone Joint Surg Am 1931;13:438–75.

World Health Organization . The evolving threat of antimicrobial resistance: options for action. Geneva: WHO, 2012.

Reich‐Schupke S, Stücker M. Neue multiresistente Erreger in der Wundtherapie. Phlebologie 2011;40:317–21.

Kerridge A, Lappin‐Scott H, Stevens J. Antibacterial properties of larval secretions of the blowfly, Lucilia sericata . Med Vet Entomol 2005;19:333–7. PubMed

Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O. Antibiotic resistance – the need for global solutions. Lancet Infect Dis 2013;13:1057–98. PubMed

Thomas S, Andrews AM, Hay NP, Bourgoise S. The anti‐microbial activity of maggot secretions: results of a preliminary study. J Tissue Viability 1999;9:127–32. PubMed

Bowling F, Salgami EV, Boulton AJ. Larval therapy: a novel treatment in Staphylococcus aureus from diabetic foot ulcers. Diabetes Care 2007;30:370–1. PubMed

Čeřovský V, Slaninová J, Fučík V, Monincová L, Bednárová L, Maloň P, Stokrová J. Lucifensin, a novel insect defensin of medicinal maggots: synthesis and structural study. Chembiochem 2011;12:1352–61. PubMed

Cazander G, Schreurs MW, Renwarin L, Dorresteijn C, Hamann D, Jukema GN. Maggot excretions affect the human complement system. Wound Repair Regen 2012;20:879–86. PubMed

Pritchard DI, Telford G, Diab M, Low W. Expression of a cGMP compatible Lucilia sericata insect serine proteinase debridement enzyme. Biotechnol Prog 2012;28:567–72. PubMed

Cazander G, Pritchard DI, Nigam Y, Jung W, Nibbering PH. Multiple actions of Lucilia sericata larvae in hard‐to‐heal wounds. Bioessays 2013;35:1083–92. PubMed

Valachová I, Bohová J, Kozánek M, Takáč P, Majtán J. Lucilia sericata medicinal maggots: a new source of antimicrobial compounds. In: Méndez‐Vilas A, editor. Microbial pathogens and strategies for combating them: science, technology and education. Badajoz: Formatex Research Center, 2013:1745–53.

Dumville JC, Worthy G, Bland JM, Cullum N, Dowson C, Iglesias C, Mitchell JL, Nelson EA, Soares MO, Torgerson DJ. Larval therapy for leg ulcers (VenUS II): randomised controlled trial. BMJ 2009;338:1047–63. PubMed PMC

Oplatelová C, Blaizot X, Mourgeon B, Chêne Y, Creveuil C, Combemale P, Laplaud AL, Sohyer‐Lebreuilly I, Dompmartin A. Maggot therapy for wound debridement: a randomized multicentre trial. Arch Dermatol 2012;148:432–8. PubMed

Mudge E, Price P, Walkley N, Harding KG. A randomized controlled trial of larval therapy for the debridement of leg ulcers: results of a multicentre, randomized, controlled, open, observer blind, parallel group study. Wound Repair Regen 2014;1:43–51. PubMed

Gottrup F, Jørgensen B. Maggot debridement: an alternative method for debridement. Eplasty 2011;11:290–302. PubMed PMC

Gilead L, Mumcuoglu KY, Ingber A. The use of maggot debridement therapy in the treatment of chronic wounds in hospitalised and ambulatory patients. J Wound Care 2012;21:82–5. PubMed

Pritchard D, Nigam Y. Maximising the secondary beneficial effects of larval debridement therapy. J Wound Care 2013;22:610–6. PubMed

Sherman R. Mechanisms of maggot‐induced wound healing: what do we know, and where do we go from here? Evid Based Complement Alternat Med 2014;2014:1–13. PubMed PMC

Strohal R, Dissemond J, O'Brien J, Piaggesi A, Rimdeika R, Young T, Apelqvist J. EWMA document: debridement: an updated overview and clarification of the principle role of debridement. J Wound Care 2013;22:S1–49. PubMed

Wolcott RD, Kennedy JP, Dowd SE. Regular debridement is the main tool for maintaining a healthy wound bed in most chronic wounds. J Wound Care 2009;18:54–6. PubMed

Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 2001;14:244–69. PubMed PMC

Hobson RP. On an enzyme from blow‐fly larvae (Lucilia sericata) which digests collagen in alkaline solution. Biochem J 1931;25:1458–63. PubMed PMC

Vistnes LM, Lee R, Ksander GA. Proteolytic activity of blowfly larvae secretions in experimental burns. Surgery 1981;90:835–41. PubMed

Chambers L, Woodrow S, Brown AP, Harris PD, Phillips D, Hall M, Church JC, Pritchard DI. Degradation of extracellular matrix components by defined proteases from the greenbottle larva Lucilia sericata used for the clinical debridement of non‐healing wounds. Br J Dermatol 2003;148:14–23. PubMed

Schmidtchen A, Wolff H, Rydengård V, Hansson C. Detection of serine proteases secreted by Lucilia sericata in vitro and during treatment of a chronic leg ulcer. Acta Derm Venereol 2003;83:310–1. PubMed

Telford G, Brown AP, Seabra RA, Horobin AJ, Rich A, English JS, Pritchard DI. Degradation of eschar from venous leg ulcers using a recombinant chymotrypsin from Lucilia sericata . Br J Dermatol 2010;163:523–31. PubMed

Britland S, Smith A, Finter W, Eagland D, Vowden K, Vowden P, Telford G, Brown A, Pritchard D. Recombinant Lucilia sericata chymotrypsin in a topical hydrogel formulation degrades human wound eschar ex vivo. Biotechnol Prog 2011;27:870–4. PubMed

Telford G, Brown AP, Kind A, English JS, Pritchard DI. Maggot chymotrypsin 1 from Lucilia sericata is resistant to endogenous wound protease inhibitors. Br J Dermatol 2011;164:192–6. PubMed

Pritchard DI, Brown AP. Degradation of MSCRAMM target macromolecules in VLU slough by Lucilia sericata chymotrypsin 1 (ISP) persists in the presence of tissue gelatinase activity. Int Wound J 2013; doi: 10.1111/iwj.12124. [Epub ahead of print]. PubMed DOI PMC

Maeda TM, Kimura CK, Takahashi KT, Ichimura KI. Increase in skin perfusion pressure after maggot debridement therapy for critical limb ischaemia. Clin Exp Dermatol 2014;39:911–4. PubMed

Davies SC, Ricotti C, Cazzaniga A, Welsh E, Eaglstein WH, Mertz PM. Microscopic and physiologic evidence for biofilm‐associated wound colonization in vivo. Wound Repair Regen 2008;16:23–9. PubMed

James GA, Swogger E, Wolcott R, Pulcini ED, Secor P, Sestrich J, Costerton JW, Stewart PS. Biofilms in chronic wounds. Wound Repair Regen 2008;16:37–44. PubMed

Schultz G. What you need to know about biofilms. Wounds International Webcast. 2011. URL http://www.woundsinternational.com/videos/view/understanding‐biofilm‐based‐wound‐care‐what‐you‐need‐to‐know [accessed on 9 April 2015].

Whitchurch CB, Tolker‐Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science 2002;295:1487. PubMed

Cowan LJ, Stechmiller JK, Phillips P, Yang Q, Schultz G. Chronic wounds, biofilms and use of medicinal larvae. Ulcers 2013;2013:487024.

Fazli M, Bjarnsholt T, Kirketerp‐Møller K, Jørgensen B, Andersen AS, Krogfelt KA, Givskov M, Tolker‐Nielsen T. Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J Clin Microbiol 2009;47:4084–9. PubMed PMC

van der Plas MJ, van der Does AM, Baldry M, Dogterom‐Ballering HC, van Gulpen C, van Dissel JT, Nibbering PH, Jukema GN. Maggot secretions/excretions inhibit multiple neutrophil pro‐inflammatory responses. Microbes Infect 2007;9:507–14. PubMed

van der Plas MJ, Baldry M, van Dissel JT, Jukema GN, Nibbering PH. Maggot secretions suppress pro‐inflammatory responses of human monocytes through elevation of cyclic AMP. Diabetologia 2009;52:1962–70. PubMed PMC

Wolcott RD, Rhoads DD, Dowd SE. Biofilms and chronic wound inflammation. J Wound Care 2008;17:333–41. PubMed

Cazander G, van de Veerdonk M, Vandenbroucke‐Grauls CM, Schreurs MW, Jukema GN. Maggot excretions inhibit biofilm formation on biomaterials. Clin Orthop Relat Res 2010;468:2789–96. PubMed PMC

van der Plas MJ, Jukema GN, Wai SW, Dogterom‐Ballering HC, Lagendijk EL, van Gulpen C, van Dissel JT, Bloemberg GV, Nibbering PH. Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa . J Antimicrob Chemother 2008;61:117–22. PubMed

van der Plas MJ, Dambrot C, Dogterom‐Ballering HC, Kruithof S, van Dissel JT, Nibbering PH. Combinations of maggot excretions/secretions and antibiotics are effective against Staphylococcus aureus biofilms and the bacteria derived therefrom. J Antimicrob Chemother 2010;65:917–23. PubMed

Harris LG, Bexfield A, Nigam Y, Rohde H, Ratcliffe NA, Mack D. Disruption of Staphylococcus epidermidis biofilms by medicinal maggot Lucilia sericata excretions/secretions. Int J Artif Organs 2009;32:555–64. PubMed

Jiang KC, Sun XJ, Wang W, Liu L, Cai Y, Chen YC, Luo N, Yu JH, Cai DY, Wang AP. Excretions/secretions from bacteria‐pretreated maggot are more effective against Pseudomonas aeruginosa biofilms. PLoS One 2012;7:1–4. PubMed PMC

Harris LG, Nigam Y, Sawyer J, Mack D, Pritchard DI. Lucilia sericata chymotrypsin disrupts protein adhesin‐mediated staphylococcal biofilm formation. Appl Environ Microbiol 2013;79:1393–5. PubMed PMC

Brown A, Horobin A, Blount DG, Hill PJ, English J, Rich A, Williams PM, Pritchard DI. Blow fly Lucilia sericata nuclease digests DNA associated with wound slough/eschar and with Pseudomonas aeruginosa biofilm. Med Vet Entomol 2012;26:432–9. PubMed

Parnés A, Lagan KM. Larval therapy in wound management: a review. Int J Clin Pract 2007;61:488–93. PubMed

Robinson W, Baker FC. The enzyme urease and occurrence of ammonia in maggot‐infected wounds. J Parasitol 1939;25:149–55.

Daeschlein G, Mumcuoglu KY, Assadian O, Hoffmeister B, Kramer A. In vitro antibacterial activity of Lucilia sericata maggot secretions. Skin Pharmacol Physiol 2007;20:112–5. PubMed

Margolin L, Gialanella P. Assessment of the antimicrobial properties of maggots. Int Wound J 2010;7:202–4. PubMed PMC

Cazander G, van Veen KE, Bouwman LH, Bernards AT, Jukema GN. The influence of maggot excretions on PAO1 biofilm formation on different biomaterials. Clin Orthop Relat Res 2009;467:536–45. PubMed PMC

Huberman L, Gollop N, Mumcuoglu KY, Block C, Galun R. Antibacterial properties of whole body extracts and haemolymph of Lucilia sericata maggots. J Wound Care 2007;16:123–7. PubMed

Kawabata T, Mitsui H, Yokota K, Ishino K, Oguma K, Sano S. Induction of antibacterial activity in larvae of the blowfly Lucilia sericata by an infected environment. Med Vet Entomol 2010;24:375–81. PubMed

Čeřovský V, Ždárek J, Fučík V, Monincová L, Voburka Z, Bém R. Lucifensin, the long‐sought antimicrobial factor of medicinal maggots of the blowfly Lucilia sericata . Cell Mol Life Sci 2010;67:455–66. PubMed PMC

El Shazely B, Veverka V, Fučík V, Voburka Z, Ždárek J, Čeřovský V. Lucifensin II, a defensin of medicinal maggots of the blowfly Lucilia cuprina (Diptera: Calliphoridae). J Med Entomol 2013;50:571–8. PubMed

Čeřovský V, Bém R. Lucifensins, the insect defensins of biomedical importance: the story behind maggot therapy. Pharmaceuticals (Basel) 2014;7:251–64. PubMed PMC

Andersen AS, Sandvang D, Schnorr KM, Kruse T, Neve S, Joergensen B, Karlsmark T, Krogflelt KA. A novel approach to the antimicrobial activity of maggot debridement therapy. J Antimicrob Chemother 2010;65:1646–54. PubMed PMC

Nygaard MK, Andersen AS, Kristensen HH, Krogfelt KA, Fojan P, Wimmer R. The insect defensin lucifensin from Lucilia sericata . J Biomol NMR 2012;52:277–82. PubMed

Bexfield A, Nigam Y, Thomas S, Ratcliffe NA. Detection and partial characterisation of two antibacterial factors from the excretions/secretions of the medicinal maggot Lucilia sericata and their activity against methicillin‐resistant Staphylococcus aureus (MRSA). Microbes Infect 2004;6:1297–304. PubMed

Kruglikova AA, Chernysh SI. Antimicrobial compounds from the excretions of surgical maggots, Lucilia sericata (Meigen) (Diptera, Calliphoridae). Entomol Rev 2011;91:813–9.

Dimarcq JL, Keppi E, Dunbar B, Lambert J, Reichhart JM, Hoffmann D, Rankine SM, Fothergill JE, Hoffmann JA. Insect Immunity: Purification and characterization of a family of novel inducible antimicrobial proteins from immunized larvae of the dipteran Phormia terranovae and complete amino‐acid sequence of the predominant member, diptericin A. Eur J Biochem 1988;171:17–22. PubMed

Otvos L. Antimicrobial peptides isolated from insects. J Pept Sci 2000;6:497–511. PubMed

Téllez GA, Castaño‐Osorio JC. Expression and purification of an active cecropin‐like recombinant protein against multidrug resistance Escherichia coli . Protein Expr Purif 2014;100:48–53. PubMed

Zhang Z, Wang J, Zhang B, Liu H, Song W, He J, Lv D, Wang S, Xu X. Activity of antimicrobial protein from maggots against Staphylococcus aureus in vitro and in vivo. Int J Mol Med 2013;31:1159–65. PubMed

Pöppel AK, Koch A, Kogel KH, Vogel H, Kollewe C, Wiesner J, Vilcinskas A. Lucimycin, an antifungal peptide from the therapeutic maggot of the common green bottle fly Lucilia sericata . Biol Chem 2014;395:649–56. PubMed

Huberman L, Gollop N, Mumcuoglu KY, Breuer E, Bhusare SR, Shai Y, Galun R. Antibacterial substances of low molecular weight isolated from the blowfly, Lucilia sericata . Med Vet Entomol 2007;21:127–31. PubMed

Bexfield A, Bond AE, Roberts EC, Dudley E, Nigam Y, Thomas S, Newton RP, Ratcliffe NA. The antibacterial activity against MRSA strains and other bacteria of a <500Da fraction from maggot excretions/secretions of Lucilia sericata (Diptera: Calliphoridae). Microbes Infect 2008;10:325–33. PubMed

Cazander G, Pawiroredjo JS, Vandenbroucke‐Grauls CM, Schreurs MW, Jukema GN. Synergism between maggot excretions and antibiotics. Wound Repair Regen 2010;18:637–42. PubMed

Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 2007;127:514–25. PubMed

Boulard C. Degradation of bovine C3 by serine proteases from parasites Hypoderma lineatum (Diptera: Oestridae). Vet Immunol Immunopathol 1989;20:387–98. PubMed

Dowsett C, Newton H. Wound bed preparation: TIME in practice. Wounds UK 2005;1:58–70.

Smith AG, Powis RA, Pritchard DI, Britland ST. Greenbottle (Lucilia sericata) larval secretions delivered from a prototype hydrogel dressing accelerate the closure of model wounds. Biotechnol Prog 2006;22:1690–6. PubMed

Horobin AJ, Shakesheff KM, Pritchard DI. Promotion of human dermal fibroblast migration, matrix remodelling and modification of fibroblast morphology within a novel 3D model by Lucilia sericata larval secretions. J Invest Dermatol 2006;126:1410–8. PubMed

Honda K, Okamoto K, Mochida Y, Ishioka K, Oka M, Maesato K, Ikee R, Moriya H, Hidaka S, Ohtake T, Doi K, Fujita T, Kobayashi S, Noiri E. A novel mechanism in maggot debridement therapy: protease in excretion/secretion promotes hepatocyte growth factor production. Am J Physiol Cell Physiol 2011;301:C1423–30. PubMed

Bexfield A, Bond AE, Morgan C, Wagstaff J, Newton RP, Ratcliffe NA, Dudley E, Nigam Y. Amino acid derivatives from Lucilia sericata excretions/secretions may contribute to the beneficial effects of maggots therapy via increased angiogenesis. Br J Dermatol 2010;162:554–62. PubMed

Wang SY, Wang K, Xin Y, Lv D. Maggot excretions/secretions induces human microvascular endothelial cell migration through AKT1. Mol Biol Rep 2010;37:2719–25. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...