Recognition of 2',5'-linked oligoadenylates by human ribonuclease L: molecular dynamics study

. 2014 Apr ; 20 (4) : 2123. [epub] 20140316

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24633766

The capability of current MD simulations to be used as a tool in rational design of agonists of medically interesting enzyme RNase L was tested. Dimerization and enzymatic activity of RNase L is stimulated by 2',5'-linked oligoadenylates (pA₂₅A₂₅A; 2-5A). First, it was necessary to ensure that a complex of monomeric human RNase L and 25A was stable in MD simulations. It turned out that Glu131 had to be protonated. The non-protonated Glu131 caused dissociation of 2-5A from RNase L. Because of the atypical 2'-5' internucleotide linkages and a specific spatial arrangement of the 25A trimer, when a single molecule carries all possible conformers of the glycosidic torsion angle, several versions of the AMBER force field were tested. One that best maintained functionally important interactions of 25A and RNase L was selected for subsequent MD simulations. Furthermore, we wonder whether powerful GPUs are able to produce MD trajectories long enough to convincingly demonstrate effects of subtle perturbations of interactions between 25A and RNase L. Detrimental impacts of various point mutations of RNase L (R155A, F126A, W60A, K89A) on 2-5A binding were observed on a time scale of 200 ns. Finally, 2-5A analogues with a bridged 3'--O,4'--C-alkylene linkage (B) introduced into the adenosine units (A) were used to assess ability of MD simulations to distinguish on the time scale of hundreds of nanoseconds between agonists of RNase L (pA₂₅A₂₅B, pB₂₅A₂₅A, pB₂₅A₂₅B) and inactive analogs (pA₂₅B₂₅A, pA₂₅B₂₅B, pB₂₅B₂₅A, pB₂₅B₂₅B). Agonists were potently bound to RNase L during 200 ns MD runs. For inactive 2-5A analogs, by contrast, significant disruptions of their interactions with RNase L already within 100 ns MD runs were found.

Zobrazit více v PubMed

Chemistry. 2006 Mar 20;12(10):2854-65 PubMed

Proc Natl Acad Sci U S A. 1978 Jan;75(1):256-60 PubMed

J Comput Chem. 2004 Oct;25(13):1605-12 PubMed

Mol Biosyst. 2013 Jul;9(7):1958-71 PubMed

Virus Res. 2007 Dec;130(1-2):85-95 PubMed

J Biol Chem. 1988 Jan 25;263(3):1131-9 PubMed

J Biol Chem. 1982 Nov 10;257(21):12739-45 PubMed

J Interferon Cytokine Res. 2011 Jan;31(1):49-57 PubMed

J Chem Theory Comput. 2013 Apr 9;9(4):2115-25 PubMed

J Biol Chem. 1983 Nov 10;258(21):13082-8 PubMed

Eur J Biochem. 1985 Sep 2;151(2):319-25 PubMed

J Biol Chem. 1984 Feb 10;259(3):1731-7 PubMed

Adv Drug Deliv Rev. 2013 Mar;65(3):331-5 PubMed

J Mol Graph. 1996 Feb;14(1):33-8, 27-8 PubMed

Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9585-90 PubMed

J Chem Theory Comput. 2011 Jun 14;7(6):1943-50 PubMed

Bioorg Med Chem Lett. 2012 Jan 1;22(1):181-5 PubMed

Bioorg Med Chem Lett. 2000 Feb 21;10(4):329-31 PubMed

Pharmacol Ther. 1998 May;78(2):55-113 PubMed

Mol Biosyst. 2008 May;4(5):372-9 PubMed

Biophys J. 2007 Jun 1;92(11):3817-29 PubMed

Chem Biodivers. 2012 Apr;9(4):669-88 PubMed

Antiviral Res. 2006 Sep;71(2-3):307-16 PubMed

Eur J Biochem. 1983 Apr 15;132(1):77-84 PubMed

Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20816-21 PubMed

Adv Drug Deliv Rev. 2007 Oct 10;59(12):1222-41 PubMed

J Chem Theory Comput. 2011 Sep 13;7(9):2886-2902 PubMed

J Comput Chem. 2005 Dec;26(16):1781-802 PubMed

Cytokine Growth Factor Rev. 2007 Oct-Dec;18(5-6):381-8 PubMed

J Biol Chem. 2005 Dec 16;280(50):41694-9 PubMed

Bioorg Med Chem Lett. 2010 Feb 1;20(3):1186-8 PubMed

J Biomol Struct Dyn. 1999 Feb;16(4):845-62 PubMed

EMBO J. 2004 Oct 13;23(20):3929-38 PubMed

J Phys Chem B. 2007 Oct 25;111(42):12263-74 PubMed

J Chem Theory Comput. 2013 Jul 9;9(7):3084-95 PubMed

Science. 2011 Oct 28;334(6055):517-20 PubMed

J Chem Theory Comput. 2012 Sep 11;8(9):3314-21 PubMed

J Biol Chem. 1983 Feb 10;258(3):1671-7 PubMed

J Chem Theory Comput. 2009 Jun 9;5(6):1632-9 PubMed

ChemMedChem. 2007 Dec;2(12):1703-7 PubMed

J Gen Physiol. 2012 Nov;140(5):541-55 PubMed

Chem Rev. 1999 Nov 10;99(11):3247-76 PubMed

Eur J Biochem. 1984 Jul 16;142(2):291-8 PubMed

J Virol. 2007 Dec;81(23):12720-9 PubMed

PLoS Comput Biol. 2010 Aug 12;6(8): PubMed

J Biol Chem. 2010 Jan 1;285(1):731-40 PubMed

Cell Rep. 2012 Oct 25;2(4):902-13 PubMed

Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10184-9 PubMed

J Biochem. 2002 Oct;132(4):643-8 PubMed

J Biol Chem. 1994 May 13;269(19):14153-8 PubMed

J Biol Chem. 1995 Mar 17;270(11):5963-78 PubMed

Biopolymers. 2013 Dec;99(12):969-77 PubMed

Proteins. 2006 Nov 15;65(3):712-25 PubMed

J Med Chem. 2006 Jun 29;49(13):3955-62 PubMed

RNA. 2010 Nov;16(11):2108-19 PubMed

J Chem Inf Model. 2011 Jan 24;51(1):69-82 PubMed

J Am Chem Soc. 2005 Apr 27;127(16):6027-38 PubMed

Biochemistry. 1984 Feb 14;23(4):766-74 PubMed

Acc Chem Res. 2000 Dec;33(12):889-97 PubMed

J Mol Biol. 1993 Apr 5;230(3):1025-54 PubMed

J Phys Chem B. 2013 May 9;117(18):5556-64 PubMed

J Biol Chem. 1985 Mar 25;260(6):3666-71 PubMed

J Med Chem. 1984 Jun;27(6):726-33 PubMed

Biochemistry. 1987 Aug 11;26(16):5172-8 PubMed

Biochemistry. 1990 Mar 13;29(10):2550-6 PubMed

Nature. 2007 Aug 16;448(7155):816-9 PubMed

Bioorg Med Chem. 2006 Dec 1;14(23):7862-74 PubMed

J Biol Chem. 1985 Feb 10;260(3):1390-3 PubMed

Science. 1995 May 26;268(5214):1144-9 PubMed

Neuron. 2007 Jun 21;54(6):905-18 PubMed

Eur J Biochem. 1984 Aug 15;143(1):165-74 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace