Recognition of 2',5'-linked oligoadenylates by human ribonuclease L: molecular dynamics study
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- adeninnukleotidy chemie metabolismus MeSH
- aktivace enzymů MeSH
- endoribonukleasy chemie metabolismus MeSH
- lidé MeSH
- molekulární konformace MeSH
- multimerizace proteinu MeSH
- oligoribonukleotidy chemie metabolismus MeSH
- simulace molekulární dynamiky * MeSH
- simulace molekulového dockingu MeSH
- vazba proteinů MeSH
- vodíková vazba MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2-5A-dependent ribonuclease MeSH Prohlížeč
- 2',5'-oligoadenylate MeSH Prohlížeč
- adeninnukleotidy MeSH
- endoribonukleasy MeSH
- oligoribonukleotidy MeSH
The capability of current MD simulations to be used as a tool in rational design of agonists of medically interesting enzyme RNase L was tested. Dimerization and enzymatic activity of RNase L is stimulated by 2',5'-linked oligoadenylates (pA₂₅A₂₅A; 2-5A). First, it was necessary to ensure that a complex of monomeric human RNase L and 25A was stable in MD simulations. It turned out that Glu131 had to be protonated. The non-protonated Glu131 caused dissociation of 2-5A from RNase L. Because of the atypical 2'-5' internucleotide linkages and a specific spatial arrangement of the 25A trimer, when a single molecule carries all possible conformers of the glycosidic torsion angle, several versions of the AMBER force field were tested. One that best maintained functionally important interactions of 25A and RNase L was selected for subsequent MD simulations. Furthermore, we wonder whether powerful GPUs are able to produce MD trajectories long enough to convincingly demonstrate effects of subtle perturbations of interactions between 25A and RNase L. Detrimental impacts of various point mutations of RNase L (R155A, F126A, W60A, K89A) on 2-5A binding were observed on a time scale of 200 ns. Finally, 2-5A analogues with a bridged 3'--O,4'--C-alkylene linkage (B) introduced into the adenosine units (A) were used to assess ability of MD simulations to distinguish on the time scale of hundreds of nanoseconds between agonists of RNase L (pA₂₅A₂₅B, pB₂₅A₂₅A, pB₂₅A₂₅B) and inactive analogs (pA₂₅B₂₅A, pA₂₅B₂₅B, pB₂₅B₂₅A, pB₂₅B₂₅B). Agonists were potently bound to RNase L during 200 ns MD runs. For inactive 2-5A analogs, by contrast, significant disruptions of their interactions with RNase L already within 100 ns MD runs were found.
Zobrazit více v PubMed
Chemistry. 2006 Mar 20;12(10):2854-65 PubMed
Proc Natl Acad Sci U S A. 1978 Jan;75(1):256-60 PubMed
J Comput Chem. 2004 Oct;25(13):1605-12 PubMed
Mol Biosyst. 2013 Jul;9(7):1958-71 PubMed
Virus Res. 2007 Dec;130(1-2):85-95 PubMed
J Biol Chem. 1988 Jan 25;263(3):1131-9 PubMed
J Biol Chem. 1982 Nov 10;257(21):12739-45 PubMed
J Interferon Cytokine Res. 2011 Jan;31(1):49-57 PubMed
J Chem Theory Comput. 2013 Apr 9;9(4):2115-25 PubMed
J Biol Chem. 1983 Nov 10;258(21):13082-8 PubMed
Eur J Biochem. 1985 Sep 2;151(2):319-25 PubMed
J Biol Chem. 1984 Feb 10;259(3):1731-7 PubMed
Adv Drug Deliv Rev. 2013 Mar;65(3):331-5 PubMed
J Mol Graph. 1996 Feb;14(1):33-8, 27-8 PubMed
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9585-90 PubMed
J Chem Theory Comput. 2011 Jun 14;7(6):1943-50 PubMed
Bioorg Med Chem Lett. 2012 Jan 1;22(1):181-5 PubMed
Bioorg Med Chem Lett. 2000 Feb 21;10(4):329-31 PubMed
Pharmacol Ther. 1998 May;78(2):55-113 PubMed
Mol Biosyst. 2008 May;4(5):372-9 PubMed
Biophys J. 2007 Jun 1;92(11):3817-29 PubMed
Chem Biodivers. 2012 Apr;9(4):669-88 PubMed
Antiviral Res. 2006 Sep;71(2-3):307-16 PubMed
Eur J Biochem. 1983 Apr 15;132(1):77-84 PubMed
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20816-21 PubMed
Adv Drug Deliv Rev. 2007 Oct 10;59(12):1222-41 PubMed
J Chem Theory Comput. 2011 Sep 13;7(9):2886-2902 PubMed
J Comput Chem. 2005 Dec;26(16):1781-802 PubMed
Cytokine Growth Factor Rev. 2007 Oct-Dec;18(5-6):381-8 PubMed
J Biol Chem. 2005 Dec 16;280(50):41694-9 PubMed
Bioorg Med Chem Lett. 2010 Feb 1;20(3):1186-8 PubMed
J Biomol Struct Dyn. 1999 Feb;16(4):845-62 PubMed
EMBO J. 2004 Oct 13;23(20):3929-38 PubMed
J Phys Chem B. 2007 Oct 25;111(42):12263-74 PubMed
J Chem Theory Comput. 2013 Jul 9;9(7):3084-95 PubMed
Science. 2011 Oct 28;334(6055):517-20 PubMed
J Chem Theory Comput. 2012 Sep 11;8(9):3314-21 PubMed
J Biol Chem. 1983 Feb 10;258(3):1671-7 PubMed
J Chem Theory Comput. 2009 Jun 9;5(6):1632-9 PubMed
ChemMedChem. 2007 Dec;2(12):1703-7 PubMed
J Gen Physiol. 2012 Nov;140(5):541-55 PubMed
Chem Rev. 1999 Nov 10;99(11):3247-76 PubMed
Eur J Biochem. 1984 Jul 16;142(2):291-8 PubMed
J Virol. 2007 Dec;81(23):12720-9 PubMed
PLoS Comput Biol. 2010 Aug 12;6(8): PubMed
J Biol Chem. 2010 Jan 1;285(1):731-40 PubMed
Cell Rep. 2012 Oct 25;2(4):902-13 PubMed
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10184-9 PubMed
J Biochem. 2002 Oct;132(4):643-8 PubMed
J Biol Chem. 1994 May 13;269(19):14153-8 PubMed
J Biol Chem. 1995 Mar 17;270(11):5963-78 PubMed
Biopolymers. 2013 Dec;99(12):969-77 PubMed
Proteins. 2006 Nov 15;65(3):712-25 PubMed
J Med Chem. 2006 Jun 29;49(13):3955-62 PubMed
RNA. 2010 Nov;16(11):2108-19 PubMed
J Chem Inf Model. 2011 Jan 24;51(1):69-82 PubMed
J Am Chem Soc. 2005 Apr 27;127(16):6027-38 PubMed
Biochemistry. 1984 Feb 14;23(4):766-74 PubMed
Acc Chem Res. 2000 Dec;33(12):889-97 PubMed
J Mol Biol. 1993 Apr 5;230(3):1025-54 PubMed
J Phys Chem B. 2013 May 9;117(18):5556-64 PubMed
J Biol Chem. 1985 Mar 25;260(6):3666-71 PubMed
J Med Chem. 1984 Jun;27(6):726-33 PubMed
Biochemistry. 1987 Aug 11;26(16):5172-8 PubMed
Biochemistry. 1990 Mar 13;29(10):2550-6 PubMed
Nature. 2007 Aug 16;448(7155):816-9 PubMed
Bioorg Med Chem. 2006 Dec 1;14(23):7862-74 PubMed
J Biol Chem. 1985 Feb 10;260(3):1390-3 PubMed
Science. 1995 May 26;268(5214):1144-9 PubMed
Neuron. 2007 Jun 21;54(6):905-18 PubMed
Eur J Biochem. 1984 Aug 15;143(1):165-74 PubMed