Formin 1 and filamin B physically interact to coordinate chondrocyte proliferation and differentiation in the growth plate
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R01 NS092062
NINDS NIH HHS - United States
NS063997-01
NINDS NIH HHS - United States
PubMed
24760772
PubMed Central
PMC4119417
DOI
10.1093/hmg/ddu186
PII: ddu186
Knihovny.cz E-resources
- MeSH
- Cell Differentiation * MeSH
- Chondrocytes metabolism pathology MeSH
- Fetal Proteins deficiency metabolism MeSH
- Filamins deficiency metabolism MeSH
- Formins MeSH
- Calcification, Physiologic MeSH
- Hypertrophy MeSH
- Nuclear Proteins deficiency metabolism MeSH
- Humans MeSH
- Microfilament Proteins deficiency metabolism MeSH
- Mice, Knockout MeSH
- Cell Proliferation MeSH
- Receptor, Parathyroid Hormone, Type 1 metabolism MeSH
- Growth Plate metabolism pathology MeSH
- Protein Transport MeSH
- Protein Binding MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Fetal Proteins MeSH
- Filamins MeSH
- Formins MeSH
- Nuclear Proteins MeSH
- Microfilament Proteins MeSH
- Receptor, Parathyroid Hormone, Type 1 MeSH
Filamin B (FlnB) is an actin-binding protein thought to transduce signals from various membrane receptors and intracellular proteins onto the actin cytoskeleton. Formin1 (Fmn1) is an actin-nucleating protein, implicated in actin assembly and intracellular signaling. Human mutations in FLNB cause several skeletal disorders associated with dwarfism and early bone fusion. Mouse mutations in Fmn1 cause aberrant fusion of carpal digits. We report here that FlnB and Fmn1 physically interact, are co-expressed in chondrocytes in the growth plate and share overlapping expression in the cell cytoplasm and nucleus. Loss of FlnB leads to a dramatic decrease in Fmn1 expression at the hypertrophic-to-ossification border. Loss of Fmn1-FlnB in mice leads to a more severe reduction in body size, weight and growth plate length, than observed in mice following knockout of either gene alone. Shortening of the long bone is associated with a decrease in chondrocyte proliferation and an overall delay in ossification in the double-knockout mice. In contrast to FlnB null, Fmn1 loss results in a decrease in the width of the prehypertrophic zone. Loss of both proteins, however, causes an overall decrease in the width of the proliferation zone and an increase in the differentiated hypertrophic zone. The current findings suggest that Fmn1 and FlnB have shared and independent functions. FlnB loss promotes prehypertrophic differentiation whereas Fmn1 leads to a delay. Both proteins, however, regulate chondrocyte proliferation, and FlnB may regulate Fmn1 function at the hypertrophic-to-ossification border, thereby explaining the overall delay in ossification.
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
Center for Neuropharmacology and Neuroscience Albany Medical College Albany NY 12208 USA
See more in PubMed
Feng Y., Walsh C.A. The many faces of filamin: a versatile molecular scaffold for cell motility and signalling. Nat. Cell. Biol. 2004;6:1034–1038. PubMed
Nakamura F., Stossel T.P., Hartwig J.H. The filamins: organizers of cell structure and function. Cell. Adh. Migr. 2011;5:160–169. PubMed PMC
Robertson S.P. Filamin A: phenotypic diversity. Curr. Opin. Genet. Dev. 2005;15:301–307. PubMed
Stossel T.P. Filamins and the potential of complexity. Cell Cycle. 2001;9:1463. PubMed
Stossel T.P., Condeelis J., Cooley L., Hartwig J.H., Noegel A., Schleicher M., Shapiro S.S. Filamins as integrators of cell mechanics and signalling. Nat. Rev. Mol. Cell. Biol. 2001;2:138–145. PubMed
Zhou A.X., Hartwig J.H., Akyurek L.M. Filamins in cell signaling, transcription and organ development. Trends Cell. Biol. 2010;20:113–123. PubMed
Krakow D., Robertson S.P., King L.M., Morgan T., Sebald E.T., Bertolotto C., Wachsmann-Hogiu S., Acuna D., Shapiro S.S., Takafuta T., et al. Mutations in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis. Nat. Genet. 2004;36:405–410. PubMed
Bicknell L.S., Farrington-Rock C., Shafeghati Y., Rump P., Alanay Y., Alembik Y., Al-Madani N., Firth H., Karimi-Nejad M.H., Kim C.A., et al. A molecular and clinical study of Larsen syndrome caused by mutations in FLNB. J. Med. Genet. 2007;44:89–98. PubMed PMC
Bicknell L.S., Morgan T., Bonafe L., Wessels M.W., Bialer M.G., Willems P.J., Cohn D.H., Krakow D., Robertson S.P. Mutations in FLNB cause boomerang dysplasia. J. Med. Genet. 2005;42:e43. PubMed PMC
Farrington-Rock C., Firestein M.H., Bicknell L.S., Superti-Furga A., Bacino C.A., Cormier-Daire V., Le Merrer M., Baumann C., Roume J., Rump P., et al. Mutations in two regions of FLNB result in atelosteogenesis I and III. Hum. Mutat. 2006;27:705–710. PubMed
Farrington-Rock C., Kirilova V., Dillard-Telm L., Borowsky A.D., Chalk S., Rock M.J., Cohn D.H., Krakow D. Disruption of the Flnb gene in mice phenocopies the human disease spondylocarpotarsal synostosis syndrome. Hum. Mol. Genet. 2008;17:631–641. PubMed PMC
Lu J., Lian G., Lenkinski R., De Grand A., Vaid R.R., Bryce T., Stasenko M., Boskey A., Walsh C., Sheen V. Filamin B mutations cause chondrocyte defects in skeletal development. Hum. Mol. Genet. 2007;16:1661–1675. PubMed
Zheng L., Baek H.J., Karsenty G., Justice M.J. Filamin B represses chondrocyte hypertrophy in a Runx2/Smad3-dependent manner. J. Cell. Biol. 2007;178:121–128. PubMed PMC
Zhou X., Tian F., Sandzen J., Cao R., Flaberg E., Szekely L., Cao Y., Ohlsson C., Bergo M.O., Boren J., et al. Filamin B deficiency in mice results in skeletal malformations and impaired microvascular development. Proc. Natl. Acad. Sci. USA. 2007;104:3919–3924. PubMed PMC
Hu J., Lu J., Lian G., Zhang J., Hecht J.L., Sheen V.L. Filamin B regulates chondrocyte proliferation and differentiation through Cdk1 signaling. PLoS One. 2014;9:e89352. PubMed PMC
Lefebvre V., Huang W., Harley V.R., Goodfellow P.N., de Crombrugghe B. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol. Cell. Biol. 1997;17:2336–2346. PubMed PMC
Quintana L., zur Nieden N.I., Semino C.E. Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering. Tissue Eng. Part B Rev. 2009;15:29–41. PubMed PMC
Bi W., Huang W., Whitworth D.J., Deng J.M., Zhang Z., Behringer R.R., de Crombrugghe B. Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc. Natl. Acad. Sci. USA. 2001;98:6698–6703. PubMed PMC
Dai J., Sultan S., Taylor S.S., Higgins J.M. The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev. 2005;19:472–488. PubMed PMC
Meech R., Edelman D.B., Jones F.S., Makarenkova H.P. The homeobox transcription factor Barx2 regulates chondrogenesis during limb development. Development. 2005;132:2135–2146. PubMed
Reichenberger E., Aigner T., von der Mark K., Stoss H., Bertling W. In situ hybridization studies on the expression of type X collagen in fetal human cartilage. Dev. Biol. 1991;148:562–572. PubMed
Lunstrum G.P., Keene D.R., Weksler N.B., Cho Y.J., Cornwall M., Horton W.A. Chondrocyte differentiation in a rat mesenchymal cell line. J. Histochem. Cytochem. 1999;47:1–6. PubMed
Lanske B., Karaplis A.C., Lee K., Luz A., Vortkamp A., Pirro A., Karperien M., Defize L.H., Ho C., Mulligan R.C., et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science. 1996;273:663–666. PubMed
Young K.G., Copeland J.W. Formins in cell signaling. Biochim. Biophys. Acta. 2010;1803:183–190. PubMed
Zhou F., Leder P., Zuniga A., Dettenhofer M. Formin1 disruption confers oligodactylism and alters Bmp signaling. Hum. Mol. Genet. 2009;18:2472–2482. PubMed PMC
Chesarone M.A., DuPage A.G., Goode B.L. Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat. Rev. Mol. Cell. Biol. 2010;11:62–74. PubMed
Goode B.L., Eck M.J. Mechanism and function of formins in the control of actin assembly. Annu. Rev. Biochem. 2007;76:593–627. PubMed
Schonichen A., Geyer M. Fifteen formins for an actin filament: a molecular view on the regulation of human formins. Biochim. Biophys. Acta. 2010;1803:152–163. PubMed
Dettenhofer M., Zhou F., Leder P. Formin 1-isoform IV deficient cells exhibit defects in cell spreading and focal adhesion formation. PLoS One. 2008;3:e2497. PubMed PMC
Romero S., Le Clainche C., Didry D., Egile C., Pantaloni D., Carlier M.F. Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell. 2004;119:419–429. PubMed
Kobielak A., Pasolli H.A., Fuchs E. Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat. Cell. Biol. 2004;6:21–30. PubMed PMC
Evangelista M., Zigmond S., Boone C. Formins: signaling effectors for assembly and polarization of actin filaments. J. Cell. Sci. 2003;116:2603–2611. PubMed
Lian G., Lu J., Hu J., Zhang J., Cross S.H., Ferland R.J., Sheen V.L. Filamin a regulates neural progenitor proliferation and cortical size through Wee1-dependent Cdk1 phosphorylation. J. Neurosci. 2012;32:7672–7684. PubMed PMC
Sheen V.L., Feng Y., Graham D., Takafuta T., Shapiro S.S., Walsh C.A. Filamin A and Filamin B are co-expressed within neurons during periods of neuronal migration and can physically interact. Hum. Mol. Genet. 2002;11:2845–2854. PubMed
Wang G., Woods A., Sabari S., Pagnotta L., Stanton L., Beier F. RhoA/ROCK signaling suppresses hypertrophic chondrocyte. J. Biol. Chem. 2004;279:13205–13214. PubMed
Ohta Y., Suzuki N., Nakamura S., Hartwig J.H., Stossel T.P. The small GTPase RalA targets filamin to induce filopodia. Proc. Natl. Acad. Sci. USA. 1999;96:2122–2128. PubMed PMC
Aspenstrom P., Richnau N., Johansson A.S. The diaphanous-related formin DAAM1 collaborates with the Rho GTPases RhoA and Cdc42, CIP4 and Src in regulating cell morphogenesis and actin dynamics. Exp. Cell. Res. 2006;312:2180–2194. PubMed
Calderwood D.A., Huttenlocher A., Kiosses W.B., Rose D.M., Woodside D.G., Schwartz M.A., Ginsberg M.H. Increased filamin binding to beta-integrin cytoplasmic domains inhibits cell migration. Nat. Cell. Biol. 2001;3:1060–1068. PubMed
Ezratty E.J., Bertaux C., Marcantonio E.E., Gundersen G.G. Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J. Cell. Biol. 2009;187:733–747. PubMed PMC
Gu Z., Noss E.H., Hsu V.W., Brenner M.B. Integrins traffic rapidly via circular dorsal ruffles and macropinocytosis during stimulated cell migration. J. Cell. Biol. 2011;193:61–70. PubMed PMC
Wehrle-Haller B., Imhof B.A. Actin, microtubules and focal adhesion dynamics during cell migration. Int. J. Biochem. Cell. Biol. 2003;35:39–50. PubMed
Jovic M., Naslavsky N., Rapaport D., Horowitz M., Caplan S. EHD1 regulates beta1 integrin endosomal transport: effects on focal adhesions, cell spreading and migration. J. Cell. Sci. 2007;120:802–814. PubMed
Salanueva I.J., Cerezo A., Guadamillas M.C., del Pozo M.A. Integrin regulation of caveolin function. J. Cell. Mol. Med. 2007;11:969–980. PubMed PMC
Gardel M.L., Schneider I.C., Aratyn-Schaus Y., Waterman C.M. Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell. Dev. Biol. 2010;26:315–333. PubMed PMC
Gori F., Demay M.B. BIG-3, a novel WD-40 repeat protein, is expressed in the developing growth plate and accelerates chondrocyte differentiation in vitro. Endocrinology. 2004;145:1050–1054. PubMed