• This record comes from PubMed

Specificities of human CD4+ T cell responses to an inactivated flavivirus vaccine and infection: correlation with structure and epitope prediction

. 2014 Jul ; 88 (14) : 7828-42. [epub] 20140430

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Tick-borne encephalitis (TBE) virus is endemic in large parts of Europe and Central and Eastern Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to the mosquito-borne yellow fever, dengue, Japanese encephalitis, and West Nile viruses, and vaccination with an inactivated whole-virus vaccine can effectively prevent clinical disease. Neutralizing antibodies are directed to the viral envelope protein (E) and an accepted correlate of immunity. However, data on the specificities of CD4(+) T cells that recognize epitopes in the viral structural proteins and thus can provide direct help to the B cells producing E-specific antibodies are lacking. We therefore conducted a study on the CD4(+) T cell response against the virion proteins in vaccinated people in comparison to TBE patients. The data obtained with overlapping peptides in interleukin-2 (IL-2) enzyme-linked immunosorbent spot (ELISpot) assays were analyzed in relation to the three-dimensional structures of the capsid (C) and E proteins as well as to epitope predictions based on major histocompatibility complex (MHC) class II peptide affinities. In the C protein, peptides corresponding to two out of four alpha helices dominated the response in both vaccinees and patients, whereas in the E protein concordance of immunodominance was restricted to peptides of a single domain (domain III). Epitope predictions were much better for C than for E and were especially erroneous for the transmembrane regions. Our data provide evidence for a strong impact of protein structural features that influence peptide processing, contributing to the discrepancies observed between experimentally determined and computer-predicted CD4(+) T cell epitopes. Importance: Tick-borne encephalitis virus is endemic in large parts of Europe and Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to yellow fever, dengue, Japanese encephalitis, and West Nile viruses, and vaccination with an inactivated vaccine can effectively prevent disease. Both vaccination and natural infection induce the formation of antibodies to a viral surface protein that neutralize the infectivity of the virus and mediate protection. B lymphocytes synthesizing these antibodies require help from other lymphocytes (helper T cells) which recognize small peptides derived from proteins contained in the viral particle. Which of these peptides dominate immune responses to vaccination and infection, however, was unknown. In our study we demonstrate which parts of the proteins contribute most strongly to the helper T cell response, highlight specific weaknesses of currently available approaches for their prediction, and demonstrate similarities and differences between vaccination and infection.

See more in PubMed

Pierson TC, Diamond MS. 2013. Flaviviruses, p 747–794 In Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Rancaniello VR, Roizman B. (ed), Fields virology, 6th ed, vol 2 Lippincott Williams & Wilkins, Philadelphia, PA

Pierson TC, Diamond MS. 2008. Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection. Expert Rev. Mol. Med. 10:e12. 10.1017/S1462399408000665 PubMed DOI PMC

Pierson TC, Fremont DH, Kuhn RJ, Diamond MS. 2008. Structural insights into the mechanisms of antibody-mediated neutralization of flavivirus infection: implications for vaccine development. Cell Host Microbe 4:229–238. 10.1016/j.chom.2008.08.004 PubMed DOI PMC

Swain SL, McKinstry KK, Strutt TM. 2012. Expanding roles for CD4+ T cells in immunity to viruses. Nat. Rev. Immunol. 12:136–148. 10.1038/nri3152 PubMed DOI PMC

Sant AJ, McMichael A. 2012. Revealing the role of CD4+ T cells in viral immunity. J. Exp. Med. 209:1391–1395. 10.1084/jem.20121517 PubMed DOI PMC

Vyas JM, Van der Veen AG, Ploegh HL. 2008. The known unknowns of antigen processing and presentation. Nat. Rev. Immunol. 8:607–618. 10.1038/nri2368 PubMed DOI PMC

Hsing LC, Rudensky AY. 2005. The lysosomal cysteine proteases in MHC class II antigen presentation. Immunol. Rev. 207:229–241. 10.1111/j.0105-2896.2005.00310.x PubMed DOI

Neefjes J, Jongsma ML, Paul P, Bakke O. 2011. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11:823–836. 10.1038/nri3084 PubMed DOI

Robinson J, Halliwell JA, McWilliam H, Lopez R, Parham P, Marsh SG. 2013. The IMGT/HLA database. Nucleic Acids Res. 41:D1222–D1227. 10.1093/nar/gks949 PubMed DOI PMC

Corse E, Gottschalk RA, Allison JP. 2011. Strength of TCR-peptide/MHC interactions and in vivo T cell responses. J. Immunol. 186:5039–5045. 10.4049/jimmunol.1003650 PubMed DOI

Baumgartner CK, Malherbe LP. 2011. Antigen-driven T-cell repertoire selection during adaptive immune responses. Immunol. Cell Biol. 89:54–59. 10.1038/icb.2010.117 PubMed DOI

Sant AJ, Chaves FA, Krafcik FR, Lazarski CA, Menges P, Richards K, Weaver JM. 2007. Immunodominance in CD4 T-cell responses: implications for immune responses to influenza virus and for vaccine design. Expert Rev. Vaccines 6:357–368. 10.1586/14760584.6.3.357 PubMed DOI

Baumgartner CK, Malherbe LP. 2010. Regulation of CD4 T-cell receptor diversity by vaccine adjuvants. Immunology 130:16–22. 10.1111/j.1365-2567.2010.03265.x PubMed DOI PMC

Scherle PA, Gerhard W. 1986. Functional analysis of influenza-specific helper T cell clones in vivo. T cells specific for internal viral proteins provide cognate help for B cell responses to hemagglutinin. J. Exp. Med. 164:1114–1128 PubMed PMC

Scherle PA, Gerhard W. 1988. Differential ability of B cells specific for external vs. internal influenza virus proteins to respond to help from influenza virus-specific T-cell clones in vivo. Proc. Natl. Acad. Sci. U. S. A. 85:4446–4450. 10.1073/pnas.85.12.4446 PubMed DOI PMC

Russell SM, Liew FY. 1979. T cells primed by influenza virion internal components can cooperate in the antibody response to haemagglutinin. Nature 280:147–148. 10.1038/280147a0 PubMed DOI

Milich DR, McLachlan A, Thornton GB, Hughes JL. 1987. Antibody production to the nucleocapsid and envelope of the hepatitis B virus primed by a single synthetic T cell site. Nature 329:547–549. 10.1038/329547a0 PubMed DOI

Fischer A, Nash S, Beverley PC, Feldmann M. 1982. An influenza virus matrix protein-specific human T cell line with helper activity for in vitro anti-hemagglutinin antibody production. Eur. J. Immunol. 12:844–849. 10.1002/eji.1830121009 PubMed DOI

Bryson CJ, Jones TD, Baker MP. 2010. Prediction of immunogenicity of therapeutic proteins: validity of computational tools. BioDrugs 24:1–8. 10.2165/11318560-000000000-00000 PubMed DOI

Heinz FX, Stiasny K. 2012. Flaviviruses and their antigenic structure. J. Clin. Virol. 55:289–295. 10.1016/j.jcv.2012.08.024 PubMed DOI

Mukhopadhyay S, Kim BS, Chipman PR, Rossmann MG, Kuhn RJ. 2003. Structure of West Nile virus. Science 302:248. 10.1126/science.1089316 PubMed DOI

Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH. 2002. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–725. 10.1016/S0092-8674(02)00660-8 PubMed DOI PMC

Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC. 1995. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375:291–298. 10.1038/375291a0 PubMed DOI

Dokland T, Walsh M, Mackenzie JM, Khromykh AA, Ee KH, Wang S. 2004. West Nile virus core protein; tetramer structure and ribbon formation. Structure 12:1157–1163. 10.1016/j.str.2004.04.024 PubMed DOI PMC

Anthony DD, Lehmann PV. 2003. T-cell epitope mapping using the ELISPOT approach. Methods 29:260–269. 10.1016/S1046-2023(02)00348-1 PubMed DOI

Richards KA, Chaves FA, Krafcik FR, Topham DJ, Lazarski CA, Sant AJ. 2007. Direct ex vivo analyses of HLA-DR1 transgenic mice reveal an exceptionally broad pattern of immunodominance in the primary HLA-DR1-restricted CD4 T-cell response to influenza virus hemagglutinin. J. Virol. 81:7608–7619. 10.1128/JVI.02834-06 PubMed DOI PMC

Nayak JL, Richards KA, Chaves FA, Sant AJ. 2010. Analyses of the specificity of CD4 T cells during the primary immune response to influenza virus reveals dramatic MHC-linked asymmetries in reactivity to individual viral proteins. Viral Immunol. 23:169–180. 10.1089/vim.2009.0099 PubMed DOI PMC

Stiasny K, Aberle JH, Chmelik V, Karrer U, Holzmann H, Heinz FX. 2012. Quantitative determination of IgM antibodies reduces the pitfalls in the serodiagnosis of tick-borne encephalitis. J. Clin. Virol. 54:115–120. 10.1016/j.jcv.2012.02.016 PubMed DOI

Stiasny K, Holzmann H, Heinz FX. 2009. Characteristics of antibody responses in tick-borne encephalitis vaccination breakthroughs. Vaccine 27:7021–7026. 10.1016/j.vaccine.2009.09.069 PubMed DOI

Kiermayr S, Kofler RM, Mandl CW, Messner P, Heinz FX. 2004. Isolation of capsid protein dimers from the tick-borne encephalitis flavivirus and in vitro assembly of capsid-like particles. J. Virol. 78:8078–8084. 10.1128/JVI.78.15.8078-8084.2004 PubMed DOI PMC

Heinz FX, Kunz C. 1981. Homogeneity of the structural glycoprotein from European isolates of tick-borne encephalitis virus: comparison with other flaviviruses. J. Gen. Virol. 57:263–274. 10.1099/0022-1317-57-2-263 PubMed DOI

Laemmli UK, Favre M. 1973. Maturation of the head of bacteriophage T4. I. DNA packaging events. J. Mol. Biol. 80:575–599 PubMed

Schaffner W, Weissmann C. 1973. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal. Biochem. 56:502–514. 10.1016/0003-2697(73)90217-0 PubMed DOI

Zhang X, Ge P, Yu X, Brannan JM, Bi G, Zhang Q, Schein S, Zhou ZH. 2013. Cryo-EM structure of the mature dengue virus at 3.5-Å resolution. Nat. Struct. Mol. Biol. 20:105–110. 10.1038/nsmb.2463 PubMed DOI PMC

Ludajic K, Fae I, Fischer GF. 2006. Characterization of a new HLA-DPB1 allele, DPB1*010103. Tissue Antigens 67:255–256. 10.1111/j.1399-0039.2006.00554.x PubMed DOI

Fischer GF, Fae I, Petrasek M, Haas H, Mayr WR. 1995. An HLA-DR11 variant (HLA-DRB1*1115) segregating in a family of Turkish origin. Tissue Antigens 45:143–144. 10.1111/j.1399-0039.1995.tb02432.x PubMed DOI

Wang P, Sidney J, Dow C, Mothe B, Sette A, Peters B. 2008. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput. Biol. 4:e1000048. 10.1371/journal.pcbi.1000048 PubMed DOI PMC

Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, Peters B. 2010. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics 11:568. 10.1186/1471-2105-11-568 PubMed DOI PMC

Knapp B, Giczi V, Ribarics R, Schreiner W. 2011. PeptX: using genetic algorithms to optimize peptides for MHC binding. BMC Bioinformatics 12:241. 10.1186/1471-2105-12-241 PubMed DOI PMC

Gelder CM, Welsh KI, Faith A, Lamb JR, Askonas BA. 1995. Human CD4+ T-cell repertoire of responses to influenza A virus hemagglutinin after recent natural infection. J. Virol. 69:7497–7506 PubMed PMC

Aberle JH, Stiasny K, Kundi M, Heinz FX. 2013. Mechanistic insights into the impairment of memory B cells and antibody production in the elderly. Age (Dordr.) 35:371–381. 10.1007/s11357-011-9371-9 PubMed DOI PMC

Litjens NH, Huisman M, Hijdra D, Lambrecht BM, Stittelaar KJ, Betjes MG. 2008. IL-2 producing memory CD4+ T lymphocytes are closely associated with the generation of IgG-secreting plasma cells. J. Immunol. 181:3665–3673. 10.4049/jimmunol.181.5.3665 PubMed DOI

Landry SJ. 2008. Three-dimensional structure determines the pattern of CD4+ T-cell epitope dominance in influenza virus hemagglutinin. J. Virol. 82:1238–1248. 10.1128/JVI.02026-07 PubMed DOI PMC

Carmicle S, Steede NK, Landry SJ. 2007. Antigen three-dimensional structure guides the processing and presentation of helper T-cell epitopes. Mol. Immunol. 44:1159–1168. 10.1016/j.molimm.2006.06.014 PubMed DOI

Surman S, Lockey TD, Slobod KS, Jones B, Riberdy JM, White SW, Doherty PC, Hurwitz JL. 2001. Localization of CD4+ T cell epitope hotspots to exposed strands of HIV envelope glycoprotein suggests structural influences on antigen processing. Proc. Natl. Acad. Sci. U. S. A. 98:4587–4592. 10.1073/pnas.071063898 PubMed DOI PMC

Brown SA, Stambas J, Zhan X, Slobod KS, Coleclough C, Zirkel A, Surman S, White SW, Doherty PC, Hurwitz JL. 2003. Clustering of Th cell epitopes on exposed regions of HIV envelope despite defects in antibody activity. J. Immunol. 171:4140–4148. 10.4049/jimmunol.171.8.4140 PubMed DOI

Harcourt GC, Lucas M, Sheridan I, Barnes E, Phillips R, Klenerman P. 2004. Longitudinal mapping of protective CD4+ T cell responses against HCV: analysis of fluctuating dominant and subdominant HLA-DR11 restricted epitopes. J. Viral Hepat. 11:324–331. 10.1111/j.1365-2893.2004.00516.x PubMed DOI

Assarsson E, Bui HH, Sidney J, Zhang Q, Glenn J, Oseroff C, Mbawuike IN, Alexander J, Newman MJ, Grey H, Sette A. 2008. Immunomic analysis of the repertoire of T-cell specificities for influenza A virus in humans. J. Virol. 82:12241–12251. 10.1128/JVI.01563-08 PubMed DOI PMC

Kotturi MF, Swann JA, Peters B, Arlehamn CL, Sidney J, Kolla RV, James EA, Akondy RS, Ahmed R, Kwok WW, Buchmeier MJ, Sette A. 2011. Human CD8+ and CD4+ T cell memory to lymphocytic choriomeningitis virus infection. J. Virol. 85:11770–11780. 10.1128/JVI.05477-11 PubMed DOI PMC

Pajot A, Michel ML, Mancini-Bourgine M, Ungeheuer MN, Ojcius DM, Deng Q, Lemonnier FA, Lone YC. 2006. Identification of novel HLA-DR1-restricted epitopes from the hepatitis B virus envelope protein in mice expressing HLA-DR1 and vaccinated human subjects. Microbes Infect. 8:2783–2790. 10.1016/j.micinf.2006.08.009 PubMed DOI

Zinckgraf JW, Sposato M, Zielinski V, Powell D, Treanor JJ, von Hofe E. 2009. Identification of HLA class II H5N1 hemagglutinin epitopes following subvirion influenza A (H5N1) vaccination. Vaccine 27:5393–5401. 10.1016/j.vaccine.2009.06.081 PubMed DOI

Calvo-Calle JM, Strug I, Nastke MD, Baker SP, Stern LJ. 2007. Human CD4+ T cell epitopes from vaccinia virus induced by vaccination or infection. PLoS Pathog. 3:1511–1529. 10.1371/journal.ppat.0030144 PubMed DOI PMC

BenMohamed L, Bertrand G, McNamara CD, Gras-Masse H, Hammer J, Wechsler SL, Nesburn AB. 2003. Identification of novel immunodominant CD4+ Th1-type T-cell peptide epitopes from herpes simplex virus glycoprotein D that confer protective immunity. J. Virol. 77:9463–9473. 10.1128/JVI.77.17.9463-9473.2003 PubMed DOI PMC

Lindenbach BD, Murray CL, Thiel HJ, Rice CM. 2013. Flaviviridae, p 712–746 In Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Rancaniello VR, Roizman B. (ed), Fields virology, 6th ed. Lippincott Williams & Wilkins, Philadelphia, PA

Honorati MC, Dolzani P, Mariani E, Piacentini A, Lisignoli G, Ferrari C, Facchini A. 1997. Epitope specificity of Th0/Th2 CD4+ T-lymphocyte clones induced by vaccination with rHBsAg vaccine. Gastroenterology 112:2017–2027. 10.1053/gast.1997.v112.pm9178695 PubMed DOI

Min WP, Kamikawaji N, Mineta M, Tana T, Kashiwagi S, Sasazuki T. 1996. Identification of an epitope for T-cells correlated with antibody response to hepatitis B surface antigen in vaccinated humans. Hum. Immunol. 46:93–99. 10.1016/0198-8859(96)00009-2 PubMed DOI

Desombere I, Gijbels Y, Verwulgen A, Leroux-Roels G. 2000. Characterization of the T cell recognition of hepatitis B surface antigen (HBsAg) by good and poor responders to hepatitis B vaccines. Clin. Exp. Immunol. 122:390–399. 10.1046/j.1365-2249.2000.01383.x PubMed DOI PMC

Doh H, Roh S, Lee KW, Kim K. 2003. Response of primed human PBMC to synthetic peptides derived from hepatitis B virus envelope proteins: a search for promiscuous epitopes. FEMS Immunol. Med. Microbiol. 35:77–85. 10.1016/S0928-8244(02)00461-3 PubMed DOI

Yang J, James E, Gates TJ, Delong JH, Lafond RE, Malhotra U, Kwok WW. 2013. CD4+ T cells recognize unique and conserved 2009 H1N1 influenza hemagglutinin epitopes after natural infection and vaccination. Int. Immunol. 25:447–457. 10.1093/intimm/dxt005 PubMed DOI PMC

Gelder CM, Lamb JR, Askonas BA. 1996. Human CD4+ T-cell recognition of influenza A virus hemagglutinin after subunit vaccination. J. Virol. 70:4787–4790 PubMed PMC

Sirven P, Castelli FA, Probst A, Szely N, Maillere B. 2009. In vitro human CD4+ T cell response to the vaccinia protective antigens B5R and A33R. Mol. Immunol. 46:1481–1487. 10.1016/j.molimm.2008.12.016 PubMed DOI

Kennedy RB, Poland GA. 2010. The identification of HLA class II-restricted T cell epitopes to vaccinia virus membrane proteins. Virology 408:232–240. 10.1016/j.virol.2010.09.013 PubMed DOI PMC

Li CK, Wu H, Yan H, Ma S, Wang L, Zhang M, Tang X, Temperton NJ, Weiss RA, Brenchley JM, Douek DC, Mongkolsapaya J, Tran BH, Lin CL, Screaton GR, Hou JL, McMichael AJ, Xu XN. 2008. T cell responses to whole SARS coronavirus in humans. J. Immunol. 181:5490–5500. 10.4049/jimmunol.181.8.5490 PubMed DOI PMC

Libraty DH, O'Neil KM, Baker LM, Acosta LP, Olveda RM. 2007. Human CD4+ memory T-lymphocyte responses to SARS coronavirus infection. Virology 368:317–321. 10.1016/j.virol.2007.07.015 PubMed DOI PMC

Chentoufi AA, Binder NR, Berka N, Durand G, Nguyen A, Bettahi I, Maillere B, BenMohamed L. 2008. Asymptomatic human CD4+ cytotoxic T-cell epitopes identified from herpes simplex virus glycoprotein B. J. Virol. 82:11792–11802. 10.1128/JVI.00692-08 PubMed DOI PMC

Addo MM, Yu XG, Rathod A, Cohen D, Eldridge RL, Strick D, Johnston MN, Corcoran C, Wurcel AG, Fitzpatrick CA, Feeney ME, Rodriguez WR, Basgoz N, Draenert R, Stone DR, Brander C, Goulder PJ, Rosenberg ES, Altfeld M, Walker BD. 2003. Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J. Virol. 77:2081–2092. 10.1128/JVI.77.3.2081-2092.2003 PubMed DOI PMC

James EA, LaFond RE, Gates TJ, Mai DT, Malhotra U, Kwok WW. 2013. Yellow fever vaccination elicits broad functional CD4+ T cell responses that recognize structural and nonstructural proteins. J. Virol. 87:12794–12804. 10.1128/JVI.01160-13 PubMed DOI PMC

Rivino L, Kumaran EA, Jovanovic V, Nadua K, Teo EW, Pang SW, Teo GH, Gan VC, Lye DC, Leo YS, Hanson BJ, Smith KG, Bertoletti A, Kemeny DM, Macary PA. 2013. Differential targeting of viral components by CD4+ versus CD8+ T lymphocytes in dengue virus infection. J. Virol. 87:2693–2706. 10.1128/JVI.02675-12 PubMed DOI PMC

Xiang J, McLinden JH, Rydze RA, Chang Q, Kaufman TM, Klinzman D, Stapleton JT. 2009. Viruses within the Flaviviridae decrease CD4 expression and inhibit HIV replication in human CD4+ cells. J. Immunol. 183:7860–7869. 10.4049/jimmunol.0902276 PubMed DOI PMC

McKee AS, Burchill MA, Munks MW, Jin L, Kappler JW, Friedman RS, Jacobelli J, Marrack P. 2013. Host DNA released in response to aluminum adjuvant enhances MHC class II-mediated antigen presentation and prolongs CD4 T-cell interactions with dendritic cells. Proc. Natl. Acad. Sci. U. S. A. 110:E1122–E1131. 10.1073/pnas.1300392110 PubMed DOI PMC

Marichal T, Ohata K, Bedoret D, Mesnil C, Sabatel C, Kobiyama K, Lekeux P, Coban C, Akira S, Ishii KJ, Bureau F, Desmet CJ. 2011. DNA released from dying host cells mediates aluminum adjuvant activity. Nat. Med. 17:996–1002. 10.1038/nm.2403 PubMed DOI

Labuda M, Austyn JM, Zuffova E, Kozuch O, Fuchsberger N, Lysy J, Nuttall PA. 1996. Importance of localized skin infection in tick-borne encephalitis virus transmission. Virology 219:357–366. 10.1006/viro.1996.0261 PubMed DOI

Eisenlohr LC, Luckashenak N, Apcher S, Miller MA, Sinnathamby G. 2011. Beyond the classical: influenza virus and the elucidation of alternative MHC class II-restricted antigen processing pathways. Immunol. Res. 51:237–248. 10.1007/s12026-011-8257-3 PubMed DOI

Metz B, Kersten GF, Hoogerhout P, Brugghe HF, Timmermans HA, de Jong A, Meiring H, ten Hove J, Hennink WE, Crommelin DJ, Jiskoot W. 2004. Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J. Biol. Chem. 279:6235–6243. 10.1074/jbc.M310752200 PubMed DOI

Zlatkovic J, Tsouchnikas G, Jarmer J, Koessl C, Stiasny K, Heinz FX. 2013. Aluminum hydroxide influences not only extent but also fine specificity and functional activity of antibody responses to tick-borne encephalitis virus in mice. J. Virol. 87:12187–12195. 10.1128/JVI.01690-13 PubMed DOI PMC

Stiasny K, Fritz R, Pangerl K, Heinz FX. 2011. Molecular mechanisms of flavivirus membrane fusion. Amino Acids 41:1159–1163. 10.1007/s00726-009-0370-4 PubMed DOI

Bressanelli S, Stiasny K, Allison SL, Stura EA, Duquerroy S, Lescar J, Heinz FX, Rey FA. 2004. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J. 23:728–738. 10.1038/sj.emboj.7600064 PubMed DOI PMC

Simitsek PD, Campbell DG, Lanzavecchia A, Fairweather N, Watts C. 1995. Modulation of antigen processing by bound antibodies can boost or suppress class II major histocompatibility complex presentation of different T cell determinants. J. Exp. Med. 181:1957–1963. 10.1084/jem.181.6.1957 PubMed DOI PMC

Antoniou AN, Watts C. 2002. Antibody modulation of antigen presentation: positive and negative effects on presentation of the tetanus toxin antigen via the murine B cell isoform of FcγRII. Eur. J. Immunol. 32:530–540. 10.1002/1521-4141(200202)32:2<530::AID-IMMU530>3.0.CO;2-X PubMed DOI

Hughes HR, Crill WD, Davis BS, Chang GJ. 2012. A West Nile virus CD4 T cell epitope improves the immunogenicity of dengue virus serotype 2 vaccines. Virology 424:129–137. 10.1016/j.virol.2011.12.012 PubMed DOI

Prange R, Streeck RE. 1995. Novel transmembrane topology of the hepatitis B virus envelope proteins. EMBO J. 14:247–256 PubMed PMC

Bruss V. 2004. Envelopment of the hepatitis B virus nucleocapsid. Virus Res. 106:199–209. 10.1016/j.virusres.2004.08.016 PubMed DOI

Dimitrov I, Garnev P, Flower DR, Doytchinova I. 2010. MHC class II binding prediction—a little help from a friend. J. Biomed. Biotechnol. 2010:705821. 10.1155/2010/705821 PubMed DOI PMC

Vratskikh O, Stiasny K, Zlatkovic J, Tsouchnikas G, Jarmer J, Karrer U, Roggendorf M, Roggendorf H, Allwinn R, Heinz FX. 2013. Dissection of antibody specificities induced by yellow fever vaccination. PLoS Pathog. 9:e1003458. 10.1371/journal.ppat.1003458 PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Human CD4+ T Helper Cell Responses after Tick-Borne Encephalitis Vaccination and Infection

. 2015 ; 10 (10) : e0140545. [epub] 20151014

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...