Human CD4+ T Helper Cell Responses after Tick-Borne Encephalitis Vaccination and Infection

. 2015 ; 10 (10) : e0140545. [epub] 20151014

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26465323

Tick-borne encephalitis virus (TBEV) is a human-pathogenic flavivirus that is endemic in large parts of Europe and Asia and causes severe neuroinvasive illness. A formalin-inactivated vaccine induces strong neutralizing antibody responses and confers protection from TBE disease. CD4+ T cell responses are essential for neutralizing antibody production, but data on the functionalities of TBEV-specific CD4+ T cells in response to vaccination or infection are lacking. This study provides a comprehensive analysis of the cytokine patterns of CD4+ T cell responses in 20 humans after TBE vaccination in comparison to those in 18 patients with TBEV infection. Specifically, Th1-specific cytokines (IFN-γ, IL-2, TNF-α), CD40 ligand and the Th1 lineage-specifying transcription factor Tbet were determined upon stimulation with peptides covering the TBEV structural proteins contained in the vaccine (C-capsid, prM/M-membrane and E-envelope). We show that TBEV-specific CD4+ T cell responses are polyfunctional, but the cytokine patterns after vaccination differed from those after infection. TBE vaccine responses were characterized by lower IFN-γ responses and high proportions of TNF-α+IL-2+ cells. In vaccine-induced responses-consistent with the reduced IFN-γ expression patterns-less than 50% of TBEV peptides were detected by IFN-γ+ cells as compared to 96% detected by IL-2+ cells, indicating that the single use of IFN-γ as a read-out strongly underestimates the magnitude and breadth of such responses. The results provide important insights into the functionalities of CD4+ T cells that coordinate vaccine responses and have direct implications for future studies that address epitope specificity and breadth of these responses.

Zobrazit více v PubMed

Vaccines against tick-borne encephalitis: WHO position paper. Wkly Epidemiol Rec. 2011;86(24):241–56. Epub 2011/06/15. . PubMed

Heinz FX, Stiasny K, Holzmann H, Grgic-Vitek M, Kriz B, Essl A, et al. Vaccination and tick-borne encephalitis, central Europe. Emerg Infect Dis. 2013;19(1):69–76. Epub 2012/12/25. 10.3201/eid1901.120458 PubMed DOI PMC

Heinz FX, Stiasny K. Flaviviruses and flavivirus vaccines. Vaccine. 2012;30(29):4301–6. Epub 2012/06/12. 10.1016/j.vaccine.2011.09.114 S0264-410X(11)01556-8 [pii]. . PubMed DOI

Pierson TC DM. Flaviviruses In Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Rancaniello VR, Roizman B (ed), Fields Virology, 6th ed, vol 2 Lippincott Williams & Wilkins, Philadelphia, P.A. 2013.

Lindenbach DB MC, Thiel HJ, Rice CM. Flaviviridae In: Knipe DM HP, editor. Fields virology. 6 ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2013.

Pierson TC, Fremont DH, Kuhn RJ, Diamond MS. Structural insights into the mechanisms of antibody-mediated neutralization of flavivirus infection: implications for vaccine development. Cell Host Microbe. 2008;4(3):229–38. Epub 2008/09/10. 10.1016/j.chom.2008.08.004 S1931-3128(08)00260-6 [pii]. PubMed DOI PMC

Pierson TC, Diamond MS. Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection. Expert Rev Mol Med. 2008;10:e12 Epub 2008/05/13. 10.1017/S1462399408000665 S1462399408000665 [pii]. PubMed DOI PMC

Scherle PA, Gerhard W. Functional analysis of influenza-specific helper T cell clones in vivo. T cells specific for internal viral proteins provide cognate help for B cell responses to hemagglutinin. J Exp Med. 1986;164(4):1114–28. Epub 1986/10/01. PubMed PMC

Scherle PA, Gerhard W. Differential ability of B cells specific for external vs. internal influenza virus proteins to respond to help from influenza virus-specific T-cell clones in vivo. Proc Natl Acad Sci U S A. 1988;85(12):4446–50. Epub 1988/06/01. PubMed PMC

Russell SM, Liew FY. T cells primed by influenza virion internal components can cooperate in the antibody response to haemagglutinin. Nature. 1979;280(5718):147–8. Epub 1979/07/12. . PubMed

Milich DR, McLachlan A, Thornton GB, Hughes JL. Antibody production to the nucleocapsid and envelope of the hepatitis B virus primed by a single synthetic T cell site. Nature. 1987;329(6139):547–9. Epub 1987/10/08. 10.1038/329547a0 . PubMed DOI

Mangada MM, Rothman AL. Altered cytokine responses of dengue-specific CD4+ T cells to heterologous serotypes. J Immunol. 2005;175(4):2676–83. Epub 2005/08/06. doi: 175/4/2676 [pii]. . PubMed

Mangada MM, Endy TP, Nisalak A, Chunsuttiwat S, Vaughn DW, Libraty DH, et al. Dengue-specific T cell responses in peripheral blood mononuclear cells obtained prior to secondary dengue virus infections in Thai schoolchildren. J Infect Dis. 2002;185(12):1697–703. Epub 2002/06/27. doi: JID011312 [pii] 10.1086/340822 . PubMed DOI

Silva ML, Martins MA, Espirito-Santo LR, Campi-Azevedo AC, Silveira-Lemos D, Ribeiro JG, et al. Characterization of main cytokine sources from the innate and adaptive immune responses following primary 17DD yellow fever vaccination in adults. Vaccine. 2011;29(3):583–92. Epub 2010/08/25. 10.1016/j.vaccine.2010.08.046 S0264-410X(10)01191-6 [pii]. . PubMed DOI

Kurane I, Meager A, Ennis FA. Dengue virus-specific human T cell clones. Serotype crossreactive proliferation, interferon gamma production, and cytotoxic activity. J Exp Med. 1989;170(3):763–75. Epub 1989/09/01. PubMed PMC

Gagnon SJ, Ennis FA, Rothman AL. Bystander target cell lysis and cytokine production by dengue virus-specific human CD4(+) cytotoxic T-lymphocyte clones. J Virol. 1999;73(5):3623–9. Epub 1999/04/10. PubMed PMC

Aberle JH, Stiasny K, Kundi M, Heinz FX. Mechanistic insights into the impairment of memory B cells and antibody production in the elderly. Age. 2012;35(2):371–81. Epub 2012/01/28. 10.1007/s11357-011-9371-9 . PubMed DOI PMC

Schwaiger J, Aberle JH, Stiasny K, Knapp B, Schreiner W, Fae I, et al. Specificities of human CD4+ T cell responses to an inactivated flavivirus vaccine and infection: correlation with structure and epitope prediction. J Virol. 2014;88(14):7828–42. Epub 2014/05/03. 10.1128/JVI.00196-14 JVI.00196-14 [pii]. PubMed DOI PMC

Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000;100(6):655–69. Epub 2000/04/13. . PubMed

O'Garra A, Gabrysova L, Spits H. Quantitative events determine the differentiation and function of helper T cells. Nat Immunol. 2011;12(4):288–94. Epub 2011/03/23. 10.1038/ni.2003 ni.2003 [pii]. . PubMed DOI

Foulds KE, Wu CY, Seder RA. Th1 memory: implications for vaccine development. Immunol Rev. 2006;211:58–66. Epub 2006/07/11. doi: IMR400 [pii] 10.1111/j.0105-2896.2006.00400.x . PubMed DOI

Kannanganat S, Ibegbu C, Chennareddi L, Robinson HL, Amara RR. Multiple-cytokine-producing antiviral CD4 T cells are functionally superior to single-cytokine-producing cells. J Virol. 2007;81(16):8468–76. Epub 2007/06/08. doi: JVI.00228-07 [pii] 10.1128/JVI.00228-07 PubMed DOI PMC

Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, Ambrozak DR, et al. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses. J Exp Med. 2007;204(6):1405–16. Epub 2007/05/31. doi: jem.20062363 [pii] 10.1084/jem.20062363 PubMed DOI PMC

Genesca M, Rourke T, Li J, Bost K, Chohan B, McChesney MB, et al. Live attenuated lentivirus infection elicits polyfunctional simian immunodeficiency virus Gag-specific CD8+ T cells with reduced apoptotic susceptibility in rhesus macaques that control virus replication after challenge with pathogenic SIVmac239. J Immunol. 2007;179(7):4732–40. Epub 2007/09/20. doi: 179/7/4732 [pii]. PubMed PMC

Wilkinson TM, Li CK, Chui CS, Huang AK, Perkins M, Liebner JC, et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat Med. 2012;18(2):274–80. Epub 2012/01/31. 10.1038/nm.2612 nm.2612 [pii]. . PubMed DOI

Pantaleo G, Harari A. Functional signatures in antiviral T-cell immunity for monitoring virus-associated diseases. Nat Rev Immunol. 2006;6(5):417–23. Epub 2006/04/20. doi: nri1840 [pii] 10.1038/nri1840 . PubMed DOI

Soghoian DZ, Jessen H, Flanders M, Sierra-Davidson K, Cutler S, Pertel T, et al. HIV-specific cytolytic CD4 T cell responses during acute HIV infection predict disease outcome. Sci Transl Med. 2012;4(123):123ra25. Epub 2012/03/02. 10.1126/scitranslmed.3003165 4/123/123ra25 [pii]. PubMed DOI PMC

Makedonas G, Betts MR. Polyfunctional analysis of human t cell responses: importance in vaccine immunogenicity and natural infection. Springer Semin Immunopathol. 2006;28(3):209–19. Epub 2006/08/26. 10.1007/s00281-006-0025-4 . PubMed DOI

Geginat J, Sallusto F, Lanzavecchia A. Cytokine-driven proliferation and differentiation of human naive, central memory and effector memory CD4+ T cells. Pathol Biol (Paris). 2003;51(2):64–6. Epub 2003/06/13. doi: S0369811403000981 [pii]. . PubMed

Yang L, Mosmann T. Synthesis of several chemokines but few cytokines by primed uncommitted precursor CD4 T cells suggests that these cells recruit other immune cells without exerting direct effector functions. Eur J Immunol. 2004;34(6):1617–26. Epub 2004/05/27. 10.1002/eji.200424939 . PubMed DOI

Wang X, Mosmann T. In vivo priming of CD4 T cells that produce interleukin (IL)-2 but not IL-4 or interferon (IFN)-gamma, and can subsequently differentiate into IL-4- or IFN-gamma-secreting cells. J Exp Med. 2001;194(8):1069–80. Epub 2001/10/17. PubMed PMC

Sad S, Mosmann TR. Single IL-2-secreting precursor CD4 T cell can develop into either Th1 or Th2 cytokine secretion phenotype. J Immunol. 1994;153(8):3514–22. Epub 1994/10/15. . PubMed

Fearon DT, Manders P, Wagner SD. Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science. 2001;293(5528):248–50. Epub 2001/07/14. 10.1126/science.1062589 293/5528/248 [pii]. . PubMed DOI

Divekar AA, Zaiss DM, Lee FE, Liu D, Topham DJ, Sijts AJ, et al. Protein vaccines induce uncommitted IL-2-secreting human and mouse CD4 T cells, whereas infections induce more IFN-gamma-secreting cells. J Immunol. 2006;176(3):1465–73. Epub 2006/01/21. doi: 176/3/1465 [pii]. . PubMed

Weaver JM, Yang H, Roumanes D, Lee FE, Wu H, Treanor JJ, et al. Increase in IFNgamma(-)IL-2(+) cells in recent human CD4 T cell responses to 2009 pandemic H1N1 influenza. PLoS One. 2013;8(3):e57275 Epub 2013/03/26. 10.1371/journal.pone.0057275 PONE-D-12-32335 [pii]. PubMed DOI PMC

Chattopadhyay PK, Yu J, Roederer M. A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles. Nat Med. 2005;11(10):1113–7. Epub 2005/09/28. doi: nm1293 [pii] 10.1038/nm1293 . PubMed DOI

De Rosa SC, Lu FX, Yu J, Perfetto SP, Falloon J, Moser S, et al. Vaccination in humans generates broad T cell cytokine responses. J Immunol. 2004;173(9):5372–80. Epub 2004/10/21. doi: 173/9/5372 [pii]. . PubMed

Stiasny K, Aberle JH, Chmelik V, Karrer U, Holzmann H, Heinz FX. Quantitative determination of IgM antibodies reduces the pitfalls in the serodiagnosis of tick-borne encephalitis. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology. 2012;54(2):115–20. Epub 2012/03/17. 10.1016/j.jcv.2012.02.016 . PubMed DOI

Stiasny K, Holzmann H, Heinz FX. Characteristics of antibody responses in tick-borne encephalitis vaccination breakthroughs. Vaccine. 2009;27(50):7021–6. Epub 2009/10/01. 10.1016/j.vaccine.2009.09.069 . PubMed DOI

Frentsch M, Arbach O, Kirchhoff D, Moewes B, Worm M, Rothe M, et al. Direct access to CD4+ T cells specific for defined antigens according to CD154 expression. Nat Med. 2005;11(10):1118–24. Epub 2005/09/28. doi: nm1292 [pii] 10.1038/nm1292 . PubMed DOI

Litjens NH, Huisman M, Hijdra D, Lambrecht BM, Stittelaar KJ, Betjes MG. IL-2 producing memory CD4+ T lymphocytes are closely associated with the generation of IgG-secreting plasma cells. Journal of immunology. 2008;181(5):3665–73. Epub 2008/08/21. . PubMed

Deng N, Weaver JM, Mosmann TR. Cytokine diversity in the Th1-dominated human anti-influenza response caused by variable cytokine expression by Th1 cells, and a minor population of uncommitted IL-2+IFNgamma- Thpp cells. PLoS One. 2014;9(5):e95986 Epub 2014/05/03. 10.1371/journal.pone.0095986 PONE-D-14-05577 [pii]. PubMed DOI PMC

Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, Flynn BJ, et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med. 2007;13(7):843–50. Epub 2007/06/15. doi: nm1592 [pii] 10.1038/nm1592 . PubMed DOI

Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R. Toll-like receptors control activation of adaptive immune responses. Nat Immunol. 2001;2(10):947–50. Epub 2001/09/08. 10.1038/ni712 ni712 [pii]. . PubMed DOI

Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16(4):343–53. Epub 2015/03/20. 10.1038/ni.3123 ni.3123 [pii]. . PubMed DOI PMC

Miller JD, van der Most RG, Akondy RS, Glidewell JT, Albott S, Masopust D, et al. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity. 2008;28(5):710–22. Epub 2008/05/13. 10.1016/j.immuni.2008.02.020 S1074-7613(08)00194-5 [pii]. . PubMed DOI

Gaucher D, Therrien R, Kettaf N, Angermann BR, Boucher G, Filali-Mouhim A, et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J Exp Med. 2008;205(13):3119–31. Epub 2008/12/03. 10.1084/jem.20082292 jem.20082292 [pii]. PubMed DOI PMC

Akondy RS, Monson ND, Miller JD, Edupuganti S, Teuwen D, Wu H, et al. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response. J Immunol. 2009;183(12):7919–30. Epub 2009/11/26. 10.4049/jimmunol.0803903 jimmunol.0803903 [pii]. PubMed DOI PMC

Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745–63. Epub 2004/03/23. 10.1146/annurev.immunol.22.012703.104702 . PubMed DOI

Helmstetter C, Flossdorf M, Peine M, Kupz A, Zhu J, Hegazy AN, et al. Individual T helper cells have a quantitative cytokine memory. Immunity. 2015;42(1):108–22. Epub 2015/01/22. 10.1016/j.immuni.2014.12.018 S1074-7613(14)00485-3 [pii]. . PubMed DOI PMC

Harari A, Vallelian F, Meylan PR, Pantaleo G. Functional heterogeneity of memory CD4 T cell responses in different conditions of antigen exposure and persistence. J Immunol. 2005;174(2):1037–45. Epub 2005/01/07. doi: 174/2/1037 [pii]. . PubMed

Betts MR, Exley B, Price DA, Bansal A, Camacho ZT, Teaberry V, et al. Characterization of functional and phenotypic changes in anti-Gag vaccine-induced T cell responses and their role in protection after HIV-1 infection. Proc Natl Acad Sci U S A. 2005;102(12):4512–7. Epub 2005/03/09. doi: 0408773102 [pii] 10.1073/pnas.0408773102 PubMed DOI PMC

Richmond M, McKinnon LR, Kiazyk SA, Wachihi C, Kimani M, Kimani J, et al. Epitope mapping of HIV-specific CD8+ T cell responses by multiple immunological readouts reveals distinct specificities defined by function. J Virol. 2011;85(3):1275–86. Epub 2010/11/19. 10.1128/JVI.01707-10 JVI.01707-10 [pii]. PubMed DOI PMC

Paulke-Korinek M, Kundi M, Laaber B, Brodtraeger N, Seidl-Friedrich C, Wiedermann U, et al. Factors associated with seroimmunity against tick borne encephalitis virus 10 years after booster vaccination. Vaccine. 2013;31(9):1293–7. Epub 2013/01/12. 10.1016/j.vaccine.2012.12.075 S0264-410X(12)01862-2 [pii]. . PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace