A complete series of 6-deoxy-monosubstituted tetraalkylammonium derivatives of α-, β-, and γ-cyclodextrin with 1, 2, and 3 permanent positive charges
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
24991293
PubMed Central
PMC4077373
DOI
10.3762/bjoc.10.142
Knihovny.cz E-zdroje
- Klíčová slova
- cationic, cyclodextrins, monosubstitution, regioselectivity, tetraalkylammonium derivatives,
- Publikační typ
- časopisecké články MeSH
An efficient synthetic route toward the preparation of a complete series of monosubstituted tetraalkylammonium cyclodextrin (CD) derivatives is presented. Monotosylation of native CDs (α-, β-, γ-) at position 6 gave the starting material. Reaction of monotosylate (mono-Ts-CD) with 45% aqueous trimethylamine gave CDs substituted with one cationic functional group in a single step. Derivatives equipped with a substituent containing two cationic sites separated by an ethylene or a propylene linker were prepared by reacting mono-Ts-CD with neat N,N,N'-trimethylethane-1,2-diamine or N,N,N'-trimethylpropane-1,3-diamine and subsequent methylation by CH3I in good yields. Finally, analogues bearing a moiety with three tetraalkylammonium sites were synthesized by reacting mono-Ts-CD with bis(3-aminopropyl)amine and subsequent methylation. The majority of the presented reactions are very straightforward with a simple work-up, which avoids the need of chromatographic separation. Thus, these reactions are suitable for the multigram-scale production of monosubstituted cationic CDs.
Zobrazit více v PubMed
Villiers A. C R Hebd Seances Acad Sci. 1891;112:536–538.
Connors K A. Chem Rev. 1997;97:1325–1358. doi: 10.1021/cr960371r. PubMed DOI
Hedges A R. Chem Rev. 1998;98:2035–2044. doi: 10.1021/cr970014w. PubMed DOI
Laza-Knoerr A L, Gref R, Couvreur P. J Drug Targeting. 2010;18:645–656. doi: 10.3109/10611861003622552. PubMed DOI
Szejtli J. J Inclusion Phenom Mol Recognit Chem. 1992;14:25–36. doi: 10.1007/BF01041363. DOI
Breslow R, Dong S D. Chem Rev. 1998;98:1997–2012. doi: 10.1021/cr970011j. PubMed DOI
Marinescu L, Bols M. Trends Glycosci Glycotechnol. 2009;21:309–323. doi: 10.4052/tigg.21.309. DOI
Khan A R, Forgo P, Stine K J, D’Souza V T. Chem Rev. 1998;98:1977–1996. doi: 10.1021/cr970012b. PubMed DOI
Ashton P R, Boyd S E, Gattuso G, Hartwell E Y, Koeniger R, Spencer N, Stoddart J F. J Org Chem. 1995;60:3898–3903. doi: 10.1021/jo00117a049. DOI
Ciucanu I, Kerek F. Carbohydr Res. 1984;131:209–217. doi: 10.1016/0008-6215(84)85242-8. DOI
Fügedi P, Nánási P, Szejtli J. Carbohydr Res. 1988;175:173–181. doi: 10.1016/0008-6215(88)84140-5. DOI
Pitha J, Milecki J, Fales H, Pannell L, Uekama K. Int J Pharm. 1986;29:73–82. doi: 10.1016/0378-5173(86)90201-2. DOI
Ashton P R, Koniger R, Stoddart J F, Alker D, Harding V D. J Org Chem. 1996;61:903–908. doi: 10.1021/jo951396d. DOI
Loftsson T, Brewster M E. J Pharm Pharmacol. 2010;62:1607–1621. doi: 10.1111/j.2042-7158.2010.01030.x. PubMed DOI
Řezanka M, Jindřich J. Carbohydr Res. 2011;346:2374–2379. doi: 10.1016/j.carres.2011.08.011. PubMed DOI
Tang W, Ng S-C. Nat Protoc. 2008;3:691–697. doi: 10.1038/nprot.2008.37. PubMed DOI
Zhong N, Byun H-S, Bittman R. Tetrahedron Lett. 1998;39:2919–2920. doi: 10.1016/S0040-4039(98)00417-1. DOI
Cai H, Nguyen T V, Vigh G. Anal Chem. 1998;70:580–589. doi: 10.1021/ac970822n. PubMed DOI
Cucinotta V, Contino A, Giuffrida A, Maccarrone G, Messina M. J Chromatogr, A. 2010;1217:953–967. doi: 10.1016/j.chroma.2009.11.094. PubMed DOI
Matsui Y, Okimoto A. Bull Chem Soc Jpn. 1978;51:3030–3034. doi: 10.1246/bcsj.51.3030. DOI
Matsui Y, Ogawa K, Mikami S, Yoshimoto M, Mochida K. Bull Chem Soc Jpn. 1987;60:1219–1223. doi: 10.1246/bcsj.60.1219. DOI
Nzeadibe K, Vigh G. Electrophoresis. 2007;28:2589–2605. doi: 10.1002/elps.200700028. PubMed DOI
Brady B, Lynam N, O’Sullivan T, Ahern C, Darcy R. Org Synth. 2000:220–223.
Byun H-S, Zhong N, Bittman R. Org Synth. 2000:225–228.
Law H, Benito J M, Garcia Fernandez J M, Jicsinszky L, Crouzy S, Defaye J. J Phys Chem B. 2011;115:7524–7532. doi: 10.1021/jp2035345. PubMed DOI
Tripodo G, Wischke C, Neffe A T, Lendlein A. Carbohydr Res. 2013;381:59–63. doi: 10.1016/j.carres.2013.08.018. PubMed DOI
Takahashi K, Hattori K. J Inclusion Phenom. 1984;2:661–667. doi: 10.1007/BF00662233. DOI
Melton L D, Slessor K N. Carbohydr Res. 1971;18:29–37. doi: 10.1016/S0008-6215(00)80256-6. DOI
De Costa B R, Radesca L, Di Paolo L, Bowen W D. J Med Chem. 1992;35:38–47. doi: 10.1021/jm00079a004. PubMed DOI
Kolb H C, Finn M G, Sharpless K B. Angew Chem, Int Ed. 2001;40:2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5. PubMed DOI
Demko Z P, Sharpless K B. Org Lett. 2001;3:4091–4094. doi: 10.1021/ol010220x. PubMed DOI
Khoukhi M, Vaultier M, Carrié R. Tetrahedron Lett. 1986;27:1031–1034. doi: 10.1016/S0040-4039(86)80040-5. DOI
Tabushi I, Shimizu N, Sugimoto T, Shiozuka M, Yamamura K. J Am Chem Soc. 1977;99:7100–7102. doi: 10.1021/ja00463a073. DOI
Continuous flow synthesis of 6-monoamino-6-monodeoxy-β-cyclodextrin
Mono-6-Substituted Cyclodextrins-Synthesis and Applications
Optimized methods for preparation of 6(I)-(ω-sulfanyl-alkylene-sulfanyl)-β-cyclodextrin derivatives