Slow to fast muscle transformation following heterochronous isotransplantation is influenced by host thyroid hormone status
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- časové faktory MeSH
- hormony štítné žlázy chemie metabolismus MeSH
- kosterní svaly cytologie metabolismus transplantace MeSH
- krysa rodu Rattus MeSH
- potkani inbrední LEW MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hormony štítné žlázy MeSH
We studied the effect of regeneration, altered innervation and thyroid hormone (TH) levels on fiber type transitions in slow soleus (SOL) muscles grafted (GRAFT) into host extensor digitorum longus (EDLh) muscles of euthyroid (EU), hyperthyroid (HT) and hypothyroid (HY) Lewis strain rats. SOL muscles were excised from 3-week to 4-week-old inbred Lewis rats and intramuscularly transplanted into EDLh muscles of 2-month-old female rats of the same strain. The proportions of type 1, 2A, 2X and 2B fibers of GRAFT were determined by immunohistochemistry and compared with those of EDLh muscle and EDL and SOL muscles of the unoperated contralateral hind limb. After an average regeneration period of 6-7 months and after being reinnervated by the "fast" peroneal nerve of EDLh muscle, GRAFT was transformed into a fast muscle. However, the extent of GRAFT transformation varied with different TH states. In the EU rats, GRAFT contained about 95 % of fast fibers, among which type 2X and 2B fibers predominated (about 75 %). The transition toward fast muscle phenotype was more pronounced in HT status, where the fastest type 2B fibers predominated. On the contrary, in HY status, the slow to fast transformation was less pronounced, as GRAFT contained less type 2B and 2X but more type 2A and 1 fibers. We conclude that the type of innervation is the crucial factor for the slow to fast fiber type transitions in GRAFT, but the extent of muscle transformation is further modulated by altered TH status.
Zobrazit více v PubMed
FEBS Lett. 1996 Dec 16;399(3):220-2 PubMed
Int Rev Cytol. 1997;170:143-223 PubMed
Muscle Nerve. 1997 Dec;20(12):1487-96 PubMed
Horm Metab Res. 2004 May;36(5):286-90 PubMed
Physiol Res. 2004;53 Suppl 1:S57-61 PubMed
Physiol Res. 2012;61(6):575-86 PubMed
J Muscle Res Cell Motil. 1996 Aug;17(4):401-9 PubMed
Physiol Res. 2005;54(6):691-6 PubMed
Gen Physiol Biophys. 1999 Dec;18 Suppl 1:84-6 PubMed
Horm Metab Res. 2013 Jul;45(7):507-12 PubMed
News Physiol Sci. 1991 Feb;6:1-6 PubMed
Physiol Res. 2014;63(Suppl 1):S133-40 PubMed
Acta Neuropathol. 2000 Oct;100(4):435-44 PubMed
J Appl Physiol (1985). 1994 Aug;77(2):493-501 PubMed
Eur J Histochem. 2008 Jul-Sep;52(3):179-90 PubMed
Physiol Res. 2014;63(Suppl 1):S119-31 PubMed
Acta Neuropathol. 2001 Nov;102(5):473-84 PubMed
Am J Physiol. 1998 Mar;274(3):R864-7 PubMed
Histochem J. 1999 May;31(5):277-83 PubMed
Physiol Res. 2001;50(6):619-26 PubMed
J Appl Physiol (1985). 1997 Feb;82(2):552-7 PubMed
Rev Physiol Biochem Pharmacol. 1992;120:115-202 PubMed
Acta Histochem. 2002;104(4):399-405 PubMed
J Appl Physiol (1985). 1987 Jun;62(6):2507-11 PubMed
Physiol Res. 2009;58(2):253-262 PubMed
Horm Metab Res. 2011 Jan;43(1):43-7 PubMed
Can J Appl Physiol. 2002 Aug;27(4):423-48 PubMed
Histochem Cell Biol. 2001 May;115(5):359-72 PubMed
Anat Embryol (Berl). 1995 Sep;192(3):283-91 PubMed
FASEB J. 1991 Dec;5(15):3064-70 PubMed
Muscle Nerve. 2000 May;23(5):661-79 PubMed
Physiol Res. 2007;56(6):833-6 PubMed
Acta Physiol (Oxf). 2010 Aug;199(4):451-63 PubMed
Physiol Res. 2013;62(4):445-53 PubMed
Physiol Res. 2000;49(6):617-33 PubMed
J Muscle Res Cell Motil. 1995 Jun;16(3):295-302 PubMed
Physiol Rev. 1996 Apr;76(2):371-423 PubMed
Histochemistry. 1979 Feb 26;60(1):71-84 PubMed