Speciation analysis of arsenic by selective hydride generation-cryotrapping-atomic fluorescence spectrometry with flame-in-gas-shield atomizer: achieving extremely low detection limits with inexpensive instrumentation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P30 ES010126
NIEHS NIH HHS - United States
R01ES015326
NIEHS NIH HHS - United States
3R01ES015326-03S1
NIEHS NIH HHS - United States
P30 DK056350
NIDDK NIH HHS - United States
DK056350
NIDDK NIH HHS - United States
P30ES010126.
NIEHS NIH HHS - United States
R01 ES015326
NIEHS NIH HHS - United States
PubMed
25300934
PubMed Central
PMC4204903
DOI
10.1021/ac502931k
Knihovny.cz E-zdroje
- MeSH
- arsen analýza chemie MeSH
- chemické techniky analytické ekonomika přístrojové vybavení MeSH
- fluorescenční spektrometrie normy MeSH
- limita detekce MeSH
- nebulizátory a vaporizátory MeSH
- pitná voda chemie MeSH
- spektrofotometrie atomová normy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- arsen MeSH
- pitná voda MeSH
This work describes the method of a selective hydride generation-cryotrapping (HG-CT) coupled to an extremely sensitive but simple in-house assembled and designed atomic fluorescence spectrometry (AFS) instrument for determination of toxicologically important As species. Here, an advanced flame-in-gas-shield atomizer (FIGS) was interfaced to HG-CT and its performance was compared to a standard miniature diffusion flame (MDF) atomizer. A significant improvement both in sensitivity and baseline noise was found that was reflected in improved (4 times) limits of detection (LODs). The yielded LODs with the FIGS atomizer were 0.44, 0.74, 0.15, 0.17 and 0.67 ng L(-1) for arsenite, total inorganic, mono-, dimethylated As and trimethylarsine oxide, respectively. Moreover, the sensitivities with FIGS and MDF were equal for all As species, allowing for the possibility of single species standardization with arsenate standard for accurate quantification of all other As species. The accuracy of HG-CT-AFS with FIGS was verified by speciation analysis in two samples of bottled drinking water and certified reference materials, NRC CASS-5 (nearshore seawater) and SLRS-5 (river water) that contain traces of methylated As species. As speciation was in agreement with results previously reported and sums of all quantified species corresponded with the certified total As. The feasibility of HG-CT-AFS with FIGS was also demonstrated by the speciation analysis in microsamples of exfoliated bladder epithelial cells isolated from human urine. The results for the sums of trivalent and pentavalent As species corresponded well with the reference results obtained by HG-CT-ICPMS (inductively coupled plasma mass spectrometry).
Zobrazit více v PubMed
Rehman K.; Naranmandura H. Metallomics 2012, 4, 881–892. PubMed
Hughes M. F. Toxicol. Lett. 2002, 133, 1–16. PubMed
Hughes M. F. Environ. Health Perspect. 2006, 114, 1790–1796. PubMed PMC
Valenzuela O. L.; Borja-Aburto V. H.; Garcia-Vargas G. G.; Cruz-Gonzales M. B.; Garcia-Montalvo E. A.; Calderon-Aranda E. S.; Razo L. M. Environ. Health Perspect. 2005, 113, 250–254. PubMed PMC
Francesconi K. A.; Kuehnelt D. Analyst 2004, 129, 373–395. PubMed
Sánchez-Rodas D.; Corns W. T.; Chen B.; Stockwell P. B. J. Anal. At. Spectrom. 2010, 25, 933–946.
Chen Y. W.; Belzile N. Anal. Chim. Acta 2010, 671, 9–26. PubMed
Matoušek T.; Hernández-Zavala A.; Svoboda M.; Langerová L.; Adair B. M.; Drobná Z.; Thomas D. J.; Stýblo M.; Dědina J. Spectrochim. Acta, Part B 2008, 63, 396–406. PubMed PMC
Currier J. M.; Svoboda M.; Matoušek T.; Dědina J.; Stýblo M. Metallomics 2011, 3, 1347–1354. PubMed PMC
Currier J. M.; Svoboda M.; de Moraes D. P.; Matoušek T.; Dědina J.; Stýblo M. Chem. Res. Toxicol. 2011, 24, 478–480. PubMed PMC
Hernández-Zavala A.; Matoušek T.; Drobná Z.; Paul D. S.; Walton F. S.; Adair B. M.; Dědina J.; Thomas D. J.; Stýblo M. J. Anal. At. Spectrom. 2008, 23, 342–351. PubMed PMC
Hernández-Zavala A.; Valenzuela O. L.; Matoušek T.; Drobná Z.; Dědina J.; Garcia-Vargas G. G.; Thomas D. J.; Del Razo L. M.; Stýblo M. Environ. Health Perspect. 2008, 116, 1656–1660. PubMed PMC
Moraes D. P.; Svoboda M.; Matoušek T.; Flores E. M. M.; Dědina J. J. Anal. At. Spectrom. 2012, 27, 1734–1742.
Matoušek T.; Currier J. M.; Trojánková N.; Saunders R. J.; Ishida M. C.; González-Horta C.; Musil S.; Mester Z.; Stýblo M.; Dědina J. J. Anal. At. Spectrom. 2013, 28, 1456–1465. PubMed PMC
Currier J. M.; Ishida M. C.; González-Horta C.; Sánchez-Ramírez B.; Ballinas-Casarrubias L.; Gutiérrez-Torres D. S.; Cerón R. H.; Morales D. V.; Terrazas F. A. B.; Del Razo L. M.; García-Vargas G. G.; Saunders R. J.; Drobná Z.; Fry R. C.; Matoušek T.; Buse J. B.; Mendez M. A.; Loomis D.; Stýblo M. Environ. Health Perspect. 2014, 122, 1088–1094. PubMed PMC
Douillet C.; Currier J.; Saunders J.; Bodnar W. M.; Matoušek T.; Stýblo M. Toxicol. Appl. Pharmacol. 2013, 267, 11–15. PubMed PMC
Dědina J. Spectrochim. Acta, Part B 2007, 62, 846–872.
Corns W. T.; Stockwell P. B.; Ebdon L.; Hill S. J. J. Anal. At. Spectrom. 1993, 8, 71–77.
Stockwell P. B.; Corns W. T.; Allen J. J. Anal. At. Spectrom. 2009, 24, 1026–1033.
D’Ulivo A.; Papoff P.; Festa C. Talanta 1983, 30, 907–913. PubMed
D’Ulivo A.; Bramanti E.; Lampugnani L.; Zamboni R. Spectrochim. Acta, Part B 2001, 56, 1893–1907.
D’Ulivo A.; Dědina J.; Lampugnani L.; Matoušek T. J. Anal. At. Spectrom. 2002, 17, 253–257.
Dědina J.; D’Ulivo A. Spectrochim. Acta, Part B 1997, 52, 1737–1746.
D’Ulivo A.; Paolicchi I.; Onor M.; Zamboni R.; Lampugnani L. Spectrochim. Acta, Part B 2009, 64, 48–55.
Featherstone A. M. Anal. Chim. Acta 2000, 409, 215–226.
Featherstone A. M.; Butler E. C. V.; O’Grady B. V.; Michel P. J. Anal. At. Spectrom. 1998, 13, 1355–1360.
Yuan C. G.; Zhang K.; Wang Z.; Jiang G. J. Anal. At. Spectrom. 2010, 25, 1605–1611.
Karadjova I. B.; Lampugnani L.; Onor M.; D’Ulivo A.; Tsalev D. L. Spectrochim. Acta, Part B 2005, 60, 816–823.
Dědina J.; Musil S.; D’Ulivo A.. Two-channel shielding unit of the atomizer for atomic fluorescence spectrometry. Czech Patent No. 303957, May 29, 2013; SciFinder Scholar, 2013:1138785.
Dědina J.; Matoušek T. J. Anal. At. Spectrom. 2000, 15, 301–304.
Matoušek T.; Dědina J.; Selecká A. Spectrochim. Acta, Part B 2002, 57, 451–462.
Musil S.; Matoušek T. Spectrochim. Acta, Part B 2008, 63, 685–691. PubMed PMC
Kratzer J.; Dočekal B.; Heitmann U.; Dědina J. J. Anal. At. Spectrom. 2011, 26, 2230–2237.
Taurková P.; Svoboda M.; Musil S.; Matoušek T. J. Anal. At. Spectrom. 2011, 26, 220–223.
Mester Z.; Fodor P. Spectrochim. Acta, Part B 1997, 52, 1763–1771.
Musil S.; Pétursdóttir Á. H.; Raab A.; Gunnlaugsdóttir H.; Krupp E.; Feldmann J. Anal. Chem. 2013, 86, 993–999. PubMed
Gomez-Ariza J. L.; Sanchez-Rodas D.; Beltran R.; Corns W. T.; Stockwell P. Appl. Organomet. Chem. 1998, 12, 439–447.
Moreno E.; Camara C.; Corns W. T.; Bryce D. W.; Stockwell P. B. J. Autom. Methods Manage. Chem. 2000, 22, 33–39. PubMed PMC
Gong Z. L.; Lu X. F.; Cullen W. R.; Le X. C. J. Anal. At. Spectrom. 2001, 16, 1409–1413.