Plasmonic nanodiamonds: targeted core-shell type nanoparticles for cancer cell thermoablation
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R25 CA148052
NCI NIH HHS - United States
PubMed
25336437
PubMed Central
PMC4411186
DOI
10.1002/adhm.201400421
Knihovny.cz E-resources
- Keywords
- ablation, cancer, gold, nanodiamonds, plasmonics,
- MeSH
- Ablation Techniques methods MeSH
- Biocompatible Materials pharmacokinetics MeSH
- Molecular Targeted Therapy methods MeSH
- HeLa Cells drug effects MeSH
- Hyperthermia, Induced methods MeSH
- Carbocyanines chemistry MeSH
- Laser Therapy methods MeSH
- Humans MeSH
- Nanoparticles chemistry MeSH
- Nanodiamonds chemistry MeSH
- Nanoshells chemistry MeSH
- Polyethylene Glycols chemistry MeSH
- Receptors, Transferrin metabolism MeSH
- Transferrin chemistry pharmacology MeSH
- Gold chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Alexa Fluor 647 MeSH Browser
- Biocompatible Materials MeSH
- Carbocyanines MeSH
- Nanodiamonds MeSH
- Polyethylene Glycols MeSH
- Receptors, Transferrin MeSH
- Transferrin MeSH
- Gold MeSH
Targeted biocompatible nanostructures with controlled plasmonic and morphological parameters are promising materials for cancer treatment based on selective thermal ablation of cells. Here, core-shell plasmonic nanodiamonds consisting of a silica-encapsulated diamond nanocrystal coated in a gold shell are designed and synthesized. The architecture of particles is analyzed and confirmed in detail using electron tomography. The particles are biocompatibilized using a PEG polymer terminated with bioorthogonally reactive alkyne groups. Azide-modified transferrin is attached to these particles, and their high colloidal stability and successful targeting to cancer cells overexpressing the transferrin receptor are demonstrated. The particles are nontoxic to the cells and they are readily internalized upon binding to the transferrin receptor. The high plasmonic cross section of the particles in the near-infrared region is utilized to quantitatively ablate the cancer cells with a short, one-minute irradiation by a pulse 750-nm laser.
See more in PubMed
Khlebtsov NG, Dykman LA. J. Quant. Spectrosc. Radiat. Transf. 2010;111:1.
Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA. Chem. Rev. 2011;111:3736. PubMed
Daniel MC, Astruc D. Chem. Rev. 2004;104:293. PubMed
Henry A-I, Bingham JM, Ringe E, Marks LD, Schatz GC, Van Duyne RP. J. Phys. Chem. C. 2011;115:9291.
Agrawal A, Huang S, Wei Haw Lin A, Barton JK, Drezek RA, Pfefer TJ, Lee M-H. J. Biomed. Opt. 2006;11:041121. PubMed
Kah JCY, Chow TH, Ng BK, Razul SG, Olivo M, Sheppard CJR. Appl. Opt. 2009;48:D96. PubMed
Chen Y-S, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S. Nano Lett. 2011;11:348. PubMed PMC
Stern JM, Stanfield J, Kabbani W, Hsieh J-T, Cadeddu JA. J. Urol. 2008;179:748. PubMed
Lu W, Xiong C, Zhang G, Huang Q, Zhang R, Zhang JZ, Li C. Clin. Cancer Res. 2009;15:876. PubMed PMC
Huang X, El-Sayed IH, Qian W, El-Sayed MA. J. Am. Chem. Soc. 2010;128:2115. PubMed
Wu G, Mikhailovsky A, Khant HA, Fu C, Chiu W, Zasadzinski JA. J. Am. Chem. Soc. 2008;130:8175. PubMed PMC
Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas NJ. J. Phys. Chem. C. 2010;114:7378.
Bardhan R, Lal S, Joshi A, Halas NJ. Acc. Chem. Res. 2011;44:936. PubMed PMC
Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL. Nano Lett. 2007;7:1929. PubMed
Chow EK, Zhang X-Q, Chen M, Lam R, Robinson E, Huang H, Schaffer D, Osawa E, Goga A, Ho D. Sci Transl Med. 2011;3:73ra21. PubMed
Vaijayanthimala V, Cheng P-Y, Yeh S-H, Liu K-K, Hsiao C-H, Chao J-I, Chang H-C. Biomaterials. 2012;33:7794. PubMed
Hui YY, Cheng CL, Chang HC. J. Phys. Appl. Phys. 2010;43:374021.
Slegerova J, Hajek M, Rehor I, Sedlak F, Stursa J, Hruby M, Cigler P. Nanoscale. 2014 PubMed
Slegerova J, Rehor I, Havlik J, Raabova H, Muchova E, Cigler P. In: Intracellular Delivery II. Prokop A, Iwasaki Y, Harada A, editors. Springer, Netherlands: Dordrecht; 2014. pp. 363–401.
Lim T-S, Fu C-C, Lee K-C, Lee H-Y, Chen K, Cheng W-F, Pai WW, Chang H-C, Fann W. Phys. Chem. Chem. Phys. 2009;11:1508. PubMed
Schietinger S, Barth M, Aichele T, Benson O. Nano Lett. 2009;9:1694. PubMed
Yung Hui Y, Lu Y-C, Su L-J, Fang C-Y, Hsu J-H, Chang H-C. Appl. Phys. Lett. 2013;102:013102.
Barth M, Schietinger S, Schröder T, Aichele T, Benson O. J. Lumin. 2010;130:1628.
Chen G, Liu Y, Song M, Wu B, Wu E, Zeng H. IEEE J. Sel. Top. Quantum Electron. 2013;19:4602404.
Chi Y, Chen G, Jelezko F, Wu E, Zeng H. IEEE Photonics Technol. Lett. 2011;23:374.
Rehor I, Mackova H, Filippov SK, Kucka J, Proks V, Slegerova J, Turner S, Van Tendeloo G, Ledvina M, Hruby M, Cigler P. ChemPlusChem. 2014;79:21. PubMed
Zhang B, Fang C-Y, Chang C-C, Peterson R, Maswadi S, Glickman RD, Chang H-C, Ye JY. Biomed. Opt. Express. 2012;3:1662. PubMed PMC
Ismaili H, Workentin MS. Chem. Commun. 2011;47:7788. PubMed
Cheng L-C, Chen HM, Lai T-C, Chan Y-C, Liu R-S, Sung JC, Hsiao M, Chen C-H, Her L-J, Tsai DP. Nanoscale. 2008;5:3931. PubMed
Liu YL, Sun KW. Appl. Phys. Lett. 2011;98:153702.
Rehor I, Slegerova J, Kucka J, Proks V, Petrakova V, Adam M-P, Treussart F, Turner S, Bals S, Sacha P, Ledvina M, Wen AM, Steinmetz NF, Cigler P. Small. 2014;10:1106. PubMed PMC
Brinson BE, Lassiter JB, Levin CS, Bardhan R, Mirin N, Halas NJ. Langmuir. 2008;24:14166. PubMed PMC
Oldenburg S, Averitt R, Westcott S, Halas N. Chem. Phys. Lett. 1998;288:243.
Rasch MR, Sokolov KV, Korgel BA. Langmuir. 2009;25:11777. PubMed PMC
Prokop A, Davidson JM. J. Pharm. Sci. 2008;97:3518. PubMed PMC
Mei BC, Susumu K, Medintz IL, Delehanty JB, Mountziaris TJ, Mattoussi H. J. Mater. Chem. 2008;18:4949.
Presolski SI, Hong VP, Finn MG. Curr. Protoc. Chem. Biol. 2011;3:153. PubMed PMC
Daniels TR, Delgado T, Helguera G, Penichet ML. Clin. Immunol. 2006;121:159. PubMed
Daniels TR, Bernabeu E, Rodríguez JA, Patel S, Kozman M, Chiappetta DA, Holler E, Ljubimova JY, Helguera G, Penichet ML. Biochim. Biophys. Acta BBA - Gen. Subj. 2012;1820:291. PubMed PMC
Huang RK, Steinmetz NF, Fu C-Y, Manchester M, Johnson JE. Nanomed. 2006;6:55. PubMed PMC
Iinuma H, Maruyama K, Okinaga K, Sasaki K, Sekine T, Ishida O, Ogiwara N, Johkura K, Yonemura Y. Int. J. Cancer. 2002;99:130. PubMed
Weng M-F, Chang B-J, Chiang S-Y, Wang N-S, Niu H. Diam. Relat. Mater. 2012;22:96.
Chang B-M, Lin H-H, Su L-J, Lin W-D, Lin R-J, Tzeng Y-K, Lee RT, Lee YC, Yu AL, Chang H-C. Adv. Funct. Mater. 2013;23:5737.
Banerjee D, Liu AP, Voss NR, Schmid SL, Finn MG. ChemBioChem. 2010;11:1273. PubMed PMC
Kang KA, Wang J, Jasinski JB, Achilefu S. J. Nanobiotechnology. 2011;9:16. PubMed PMC
de Gennes PG. Adv. Colloid Interface Sci. 1987;27:189.
Bernardi RJ, Lowery AR, Thompson PA, Blaney SM, West JL. J. Neurooncol. 2008;86:165. PubMed
Farokhzad OC, Langer R. ACS Nano. 2009;3:16. PubMed
Ferrari M. Nat. Rev. Cancer. 2005;5:161. PubMed
Chow EK-H, Ho D. Sci. Transl. Med. 2013;5:216rv4. PubMed
Webb JA, Bardhan R. Nanoscale. 2014;6:2502. PubMed
Howarth M, Wenhao Liu, Puthenveetil S, Zheng Yi, Marshall LF, Schmidt MM, Wittrup KD, Bawendi MG, Ting AY. Nat. Methods. 2008;5:397. PubMed PMC
Rehor I, Cigler P. Diam. Relat. Mater. 2014;46:21.
Susumu K, Mei BC, Mattoussi H. Nat. Protoc. 2009;4:424. PubMed
Mohan N, Chen C-S, Hsieh H-H, Wu Y-C, Chang H-C. Nano Lett. 2010;10:3692. PubMed
Graf C, Vossen DLJ, Imhof A, van Blaaderen A. Langmuir. 2003;19:6693.
Hong V, Presolski SI, Ma C, Finn MG. Angew. Chem. Int. Ed. 2009;48:9879. PubMed PMC