Comparison of the level of boron concentrations in black teas with fruit teas available on the Polish market
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články
PubMed
25379551
PubMed Central
PMC4212594
DOI
10.1155/2014/898425
Knihovny.cz E-zdroje
- MeSH
- bor analýza MeSH
- čaj chemie MeSH
- chuťové esence chemie MeSH
- lidé MeSH
- nápoje analýza MeSH
- ovoce chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Geografické názvy
- Polsko MeSH
- Názvy látek
- bor MeSH
- čaj MeSH
- chuťové esence MeSH
The determination of boron by inductively coupled plasma-atomic emission spectrometry has been carried in water-soluble and acid soluble (total content) fractions of 36 samples of traditional black tea and fruit brew. The estimation of the impact of the type of tea on the concentration of boron in water-soluble and acid extracts and potential human health risk from the daily intake of boron was carried out in this study. The levels of boron differed significantly in black and fruit tea types. The mean total content of boron ranged from 8.31 to 18.40 mg/kg in black teas, from 12.85 to 15.13 mg/kg in black tea with fruit flavor, and from 12.09 to 22.77 mg/kg in fruit brews. The degree of extraction of boron in black tea ranged from 8% to 27% and for fruit tea from 17% to 69%. In addition, the values below 25% were of black teas with fruit flavors. The daily intake of B from tea infusions (three cups/day) is still within the average daily intake except for some of the fruit brews which exceed acceptable regulations of the daily intake of total boron by humans. Hence, it may not produce any health risks for human consumption, if other sources of metal contaminated food are not taken at the same time.
Zobrazit více v PubMed
Herera-Rodrigez M., González-Fontes A., Rexach J., Camacho-Crist J. J., Maldonado J. M., Navarro-Gochicoa M. T., González-Fontes A., Camacho-Cristóbal J. J. Role of boron in vascular plants and respononse mechanisms to boron stresses. Plant Stress. 2010;4(2):115–122.
Hilal N., Kim G. J., Somerfield C. Boron removal from saline water: a comprehensive review. Desalination. 2011;273(1):23–35. doi: 10.1016/j.desal.2010.05.012. DOI
Burguera M., Burguera J. L., Rondón C., Carrero P. Determination of boron in blood, urine and bone by electrothermal atomic absorption spectrometry using zirconium and citric acid as modifiers. Spectrochimica Acta B: Atomic Spectroscopy. 2001;56(10):1845–1857. doi: 10.1016/S0584-8547(01)00340-8. DOI
Carrero P., Malavé A., Rojas E., Rondón C., De Peña Y. P., Burguera J. L., Burguera M. On-line generation and hydrolysis of methyl borate for the spectrophotometric determination of boron in soil and plants with azomethine-H. Talanta. 2005;68(2):374–381. doi: 10.1016/j.talanta.2005.08.058. PubMed DOI
Kot F. S. Boron sources, speciation and its potential impact on health. Reviews in Environmental Science and Biotechnology. 2009;8(1):3–28. doi: 10.1007/s11157-008-9140-0. DOI
Resano M., Briceño J., Aramendía M., Belarra M. A. Solid sampling-graphite furnace atomic absorption spectrometry for the direct determination of boron in plant tissues. Analytica Chimica Acta. 2007;582(2):214–222. doi: 10.1016/j.aca.2006.09.023. PubMed DOI
Bolaños L., Lukaszewski K., Bonilla I., Blevins D. Why boron? Plant Physiology and Biochemistry. 2004;42(11):907–912. doi: 10.1016/j.plaphy.2004.11.002. PubMed DOI
Zaijun L., Zhengwei C., Jian T. The determination of boron in food and seed by spectrophotometry using a new reagent 3,4-dihydroxyazomethine-H. Food Chemistry. 2006;94(2):310–314. doi: 10.1016/j.foodchem.2005.01.019. DOI
Wiley H. W. Influence of Food Preservatives and Artificial Colors on Digestion and Health. I. Boric Acid and Borax. Vol. 84. US Department of Agriculture Bulletin; 1904.
Dambiec M., Polechońska L., Klink A. Levels of essential and non-essential elements in black teas commercialized in Poland and their transfer to tea infusion. Journal of Food Composition and Analysis. 2013;31(1):62–66. doi: 10.1016/j.jfca.2013.03.006. DOI
Horanni R., Engelhardt U. H. Determination of amino acids in white, green, black, oolong, pu-erh teas and tea products. Journal of Food Composition and Analysis. 2013;31(1):94–100. doi: 10.1016/j.jfca.2013.03.005. DOI
Szymczycha-Madeja A., Welna M., Pohl P. Elemental analysis of teas and their infusions by spectrometric methods. Trends in Analytical Chemistry. 2012;35:165–181. doi: 10.1016/j.trac.2011.12.005. DOI
Koblar A., Tavčar G., Ponikvar-Svet M. Fluoride in teas of different types and forms and the exposure of humans to fluoride with tea and diet. Food Chemistry. 2012;130(2):286–290. doi: 10.1016/j.foodchem.2011.07.037. DOI
Frankowski M. Aluminium and its complexes in teas and fruity brew samples, speciation and ions determination by ion chromatography and high-performance liquid chromatography-fluorescence analytical methods. Food Analytical Methods. 2014;7(5):1109–1117.
Rajput M., Jain V. K., Jain D. P., Aggarwal M., Khandal R. K. Quantitative determination of boron content in tamsulosin hydrochloride using inductively coupled plasma optical emission spectroscopy. International Journal of Pharmacy and Pharmaceutical Sciences. 2010;2(4):182–185.
Krejčová A., Černohorský T. The determination of boron in tea and coffee by ICP-AES method. Food Chemistry. 2003;82:303–308.
Şimşek A., Korkmaz D., Velioǧlu Y. S., Ataman O. Y. Determination of boron in hazelnut (Corylus avellana L.) varieties by inductively coupled plasma optical emission spectrometry and spectrophotometry. Food Chemistry. 2003;83(2):293–296. doi: 10.1016/S0308-8146(03)00122-5. DOI
Yücel Y., Sultanoǧlu P. Characterization of Hatay honeys according to their multi-element analysis using ICP-OES combined with chemometrics. Food Chemistry. 2013;140(1-2):231–237. doi: 10.1016/j.foodchem.2013.02.046. PubMed DOI
Phan-Thien K., Wright G. C., Lee N. A. Inductively coupled plasma-mass spectrometry (ICP-MS) and -optical emission spectroscopy (ICP-OES) for determination of essential minerals in closed acid digestates of peanuts (Arachis hypogaeaL.) Food Chemistry. 2012;134(1):453–460. doi: 10.1016/j.foodchem.2012.02.095. DOI
Naozuka J., Carvalho Vieira E., Nascimento A. N., Oliveira P. V. Elemental analysis of nuts and seeds by axially viewed ICP OES. Food Chemistry. 2011;124(4):1667–1672. doi: 10.1016/j.foodchem.2010.07.051. DOI
Chope G. A., Terry L. A. Use of canonical variate analysis to differentiate onion cultivars by mineral content as measured by ICP-AES. Food Chemistry. 2009;115(3):1108–1113. doi: 10.1016/j.foodchem.2008.12.090. DOI
Rubio C., Lucas J. R. D., Gutiérrez A. J., Glez-Weller D., Pérez Marrero B., Caballero J. M., Revert C., Hardisson A. Evaluation of metal concentrations in mentha herbal teas (Mentha piperita, Mentha pulegium and Mentha species) by inductively coupled plasma spectrometry. Journal of Pharmaceutical and Biomedical Analysis. 2012;71:11–17. doi: 10.1016/j.jpba.2012.07.015. PubMed DOI
Szabo A. S., Golightly D. W. Determination of boron in liquid nutritional foods by ICP-AES. Journal of Food Composition and Analysis. 1995;8(3):220–231. doi: 10.1006/jfca.1995.1016. DOI
Frankowski M., Zioła-Frankowska A., Siepak J. From soil to leaves: aluminum fractionation by single step extraction procedures in polluted and protected areas. Journal of Environmental Management. 2013;127:1–9. doi: 10.1016/j.jenvman.2013.04.033. PubMed DOI
Meacham S., Karakas S., Wallace A., Altun F. Boron in human health: evidence for dietary recommendations and public policies. The Open Mineral processing Journal. 2010;3:36–53.
Özcan M., Ünver A., Uçar T., Arslan D. Mineral content of some herbs and herbal teas by infusion and decoction. Food Chemistry. 2008;106(3):1120–1127. doi: 10.1016/j.foodchem.2007.07.042. DOI
Malik J., Szakova J., Drabek O., Balik J., Kokoska L. Determination of certain micro and macroelements in plant stimulants and their infusions. Food Chemistry. 2008;111(2):520–525. doi: 10.1016/j.foodchem.2008.04.009. PubMed DOI
Malik J., Frankova A., Drabek O., Szakova J., Ash C., Kokoska L. Aluminium and other elements in selected herbal tea plant species and their infusions. Food Chemistry. 2013;139(1–4):728–734. doi: 10.1016/j.foodchem.2013.02.013. PubMed DOI
Pytlakowska K., Kita A., Janoska P., Połowniak M., Kozik V. Multi-element analysis of mineral and trace elements in medicinal herbs and their infusions. Food Chemistry. 2012;135(2):494–501. doi: 10.1016/j.foodchem.2012.05.002. PubMed DOI
Stefanovits-Bányai É., Szentmihályi K., Hegedus A., Koczka N., Váli L., Taba G., Blázovics A. Metal ion and antioxidant alterations in leaves between different sexes of Ginkgo biloba L. Life Sciences. 2006;78(10):1049–1056. doi: 10.1016/j.lfs.2005.06.012. PubMed DOI
Welna M., Szymczycha-Madeja A., Pohl P. A comparison of samples preparation strategies in the multi-elemental analysis of tea by spectrometric methods. Food Research International. 2013;53(2):922–930. doi: 10.1016/j.foodres.2013.03.030. DOI
Murray F. J., Schlekat C. E. Comparison of risk assessments of boron: alternate approaches to chemical-specific adjustment factors. Human and Ecological Risk Assessment. 2004;10(1):57–68. doi: 10.1080/10807030490280954. DOI