Hypomethylation and Over-Expression of the Beta Isoform of BLIMP1 is Induced by Epstein-Barr Virus Infection of B Cells; Potential Implications for the Pathogenesis of EBV-Associated Lymphomas
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
25436766
PubMed Central
PMC4235687
DOI
10.3390/pathogens1020083
PII: pathogens1020083
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
B-lymphocyte-induced maturation protein 1 (BLIMP1) exists as two major isoforms, α and β, which arise from alternate promoters. Inactivation of the full length BLIMP1α isoform is thought to contribute to B cell lymphomagenesis by blocking post-germinal centre (GC) B cell differentiation. In contrast, the shorter β isoform is functionally impaired and over-expressed in several haematological malignancies, including diffuse large B cell lymphomas (DLBCL). We have studied the influence on BLIMP1β expression of the Epstein-Barr virus (EBV), a human herpesvirus that is implicated in the pathogenesis of several GC-derived lymphomas, including a subset of DLBCL and Hodgkin's lymphoma (HL). We show that BLIMP1β expression is increased following the EBV infection of normal human tonsillar GC B cells. We also show that this change in expression is accompanied by hypomethylation of the BLIMP1β-specific promoter. Furthermore, we confirmed previous reports that the BLIMP1β promoter is hypomethylated in DLBCL cell lines and show for the first time that BLIMP1β is hypomethylated in the Hodgkin/Reed-Sternberg (HRS) cells of HL. Our results provide evidence in support of a role for BLIMP1β in the pathogenesis of EBV-associated B cell lymphomas.
H Lee Moffitt Cancer Center 12902 Magnolia Drive MRC 4 East Tampa FL 33612 USA
School of Cancer Sciences University of Birmingham B15 2TT UK
Zobrazit více v PubMed
Györy I., Fejér G., Ghosh N., Seto E., Wright K.L. Identification of a functionally impaired positive regulatory domain I binding factor 1 transcription repressor in myeloma cell lines. J. Immunol. 2003;170:125–133. PubMed
Shapiro-Shelef M., Lin K.I., McHeyzer-Williams L.J., Liao J., McHeyzer-Williams M.G., Calame K. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity. 2003;19:607–620. doi: 10.1016/S1074-7613(03)00267-X. PubMed DOI
Calame K.L., Lin K.I., Tunyaplin C. Regulatory mechanisms that determine the development and function of plasma cells. Annu. Rev. Immunol. 2003;21:205–230. doi: 10.1146/annurev.immunol.21.120601.141138. PubMed DOI
Morishita K. Leukemogenesis of the EVI1/MEL1 Gene Family. Int. J. Hematol. 2007;85:279–286. doi: 10.1532/IJH97.06174. PubMed DOI
Huang S. The retinoblastoma protein-interacting zinc finger gene RIZ in 1p36-linked cancers. Front Biosci. 1999;4:528–532. doi: 10.2741/Huang. PubMed DOI
Chadwick R.B., Jiang G.L., Bennington G.A., Yuan B., Johnson C.K., Stevens M.W., Niemann T.H., Peltomaki P., Huang S., de la Chapelle A. Candidate tumor suppressor RIZ is frequently involved in colorectal carcinogenesis. Proc. Natl. Acad. Sci. USA. 2000;97:2662–2667. PubMed PMC
Steele-Perkins G., Fang W., Yang X.H., Van Gele M., Carling T., Gu J., Buyse I.M., Fletcher J.A., Liu J., Bronson R., Chadwick R.B., de la Chapelle A., Zhang X., Speleman F., Huang S. Tumor formation and inactivation of RIZ1, an Rb-binding member of a nuclear proteinmethyltransferase superfamily. Genes Dev. 2001;15:2250–2262. doi: 10.1101/gad.870101. PubMed DOI PMC
Sasaki O., Meguro K., Tohmiya Y., Funato T., Shibahara S., Sasaki T. Altered expression of retinoblastoma protein-interacting zinc finger gene, RIZ, in human leukaemia. Br. J. Haematol. 2002;119:940–948. doi: 10.1046/j.1365-2141.2002.03972.x. PubMed DOI
He L., Yu J.X., Liu L., Buyse I.M., Wang M.S., Yang Q.C., Nakagawara A., Brodeur G.M., Shi Y.E., Huang S. RIZ1, but not the alternative RIZ2 product of the same gene, is underexpressed in breast cancer, and forced RIZ1 expression causes G2-M cell cycle arrest and/or apoptosis. Cancer Res. 1998;58:4238–4244. PubMed
Cuenco G.M., Nucifora G., Ren R. Human AML1/MDS1/EVI1 fusion protein induces an acute myelogenous leukemia (AML) in mice: A model for human AML. Proc. Natl. Acad. Sci. USA. 2000;97:1760–1765. doi: 10.1073/pnas.030421197. PubMed DOI PMC
Soderholm J., Kobayashi H., Mathieu C., Rowley J.D., Nucifora G. The leukemia-associated gene MDS1/EVI1 is a new type of GATA-binding transactivator. Leukemia. 1997;11:352–358. PubMed
Kurokawa M., Mitani K., Imai Y., Ogawa S., Yazaki Y., Hirai H. The t(3;21) fusion product, AML1/Evi-1, interacts with Smad3 and blocks transforming growth factor-beta-mediated growth inhibition of myeloid cells. Blood. 1998;92:4003–4012. PubMed
Kurokawa M., Mitani K., Irie K., Matsuyama T., Takahashi T., Chiba S., Yazaki Y., Matsumoto K., Hirai H. The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature. 1998;394:92–96. doi: 10.1038/27945. PubMed DOI
Nucifora G. The EVI1 gene in myeloid leukemia. Leukemia. 1997;11:2022–2031. PubMed
Sood R., Talwar-Trikha A., Chakrabarti S.R., Nucifora G. MDS1/EVI1 enhances TGF-beta1 signaling and strengthens its growth-inhibitory effect but the leukemia-associated fusion protein AML1/MDS1/EVI1, product of the t(3;21), abrogates growth inhibition in response to TGF-betal. Leukemia. 1999;13:348–357. doi: 10.1038/sj.leu.2401360. PubMed DOI
Barjesteh van Waalwijk van Doorn-Khosrovani S., Erpelinck C., van Putten W.L., Valk P.J., van der Poel-van de Luytgaarde S., Hack R., Slater R., Smit E.M., Beverloo H.B., Verhoef G., Verdonck L.F., Ossenkoppele G.J., Sonneveld P., de Greef G.E., Löwenberg B., Delwel R. High EVI1 expression predicted poor survival in acute myeloid leukemia: A study of 319 de novo AML patients. Blood. 2003;101:837–845. PubMed
Mochizuki N., Shimizu S., Nagasawa T., Tanaka H., Taniwaki M., Yokota J., Morishita K. A novel gene, MEL1, mapped to 1p36.3 is highly homologous to the MDS1/EVI1 gene and is transcriptionally activated in t(1;3)(p36;q21)-positive leukemia cells. Blood. 2000;96:3209–3214. PubMed
Tam W., Gomez M., Chadburn A., Lee J.W., Chan W.C., Knowles D.M. Mutational analysis of PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. Blood. 2006;107:4090–4100. doi: 10.1182/blood-2005-09-3778. PubMed DOI
Pasqualucci L., Compagno M., Houldsworth J., Monti S., Grunn A., Nandula S.V., Aster J.C., Murty V.V., Shipp M.A., Dalla-Favera R. Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J. Exp. Med. 2006;203:311–317. doi: 10.1084/jem.20052204. PubMed DOI PMC
Ocana E., Gonzalez-Garcia I., Gutierrez N.C., Mora-Lopez F., Brieva J.A., Campos-Caro A. The expression of PRDI-BF1 beta isoform in multiple myeloma plasma cells. Haematologica. 2006;91:1579–1580. PubMed
Zhao W.L., Liu Y.Y., Zhang Q.L., Wang L., Leboeuf C., Zhang Y.W., Ma J., Garcia J.F., Song Y.P., Li J.M., Shen Z.X., Chen Z., Janin A., Chen S.J. PRDM1 is involved in chemoresistance of T-cell lymphoma and down-regulated by the proteasome inhibitor. Blood. 2008;111:3867–3871. PubMed
Liu Y.Y., Leboeuf C., Shi J.Y., Li J.M., Wang L., Shen Y., Garcia J.F., Shen Z.X., Chen Z., Janin A., Chen S.J., Zhao W.L. Rituximab plus CHOP (R-CHOP) overcomes PRDM1-associated resistance to chemotherapy in patients with diffuse large B-cell lymphoma. Blood. 2007;110:339–344. doi: 10.1182/blood-2006-09-049189. PubMed DOI
Zhang Y.W., Xie H.Q., Chen Y., Jiao B., Shen Z.X., Chen S.J., Zhao W.L. Loss of promoter methylation contributes to the expression of functionally impaired PRDM1β isoform in diffuse large B-cell lymphoma. Int. J. Hematol. 2010;92:439–444. doi: 10.1007/s12185-010-0689-3. PubMed DOI
Baumforth K.R.N., Flavell J.R., Davies G., Reynolds G.M., Pettit T., Wei W., Kishi Y., Arai H., Morgan S., Stankovic T., Nowakova M., Pratt G., Aoki J., Wakelam M.J.O., Young L.S., Murray P.G. Induction of autotaxin by Epstein-Barr virus promotes the growth and survival of Hodgkin’s lymphoma cells. Blood. 2005;106:2138–2146. doi: 10.1182/blood-2005-02-0471. PubMed DOI
Oyama T., Yamamoto K., Asano N., Oshiro A., Suzuki R., Kagami Y., Morishima Y., Takeuchi K., Izumo T., Mori S., Ohshima K., Suzumiya J., Nakamura N., Abe M., Ichimura K., Sato Y., Yoshino T., Naoe T., Shimoyama Y., Kamiya Y., Kinoshita T. Age-related EBV-associated B-cell lymphoproliferative disorders constitute a distinct clinicopathologic group: A study of 96 patients. Clin. Cancer Res. 2007;13:5124–5132. PubMed
Anastasiadou E., Vaeth S., Cuomo L., Boccellato F., Vincenti S., Cirone M., Presutti C., Junker S., Winberg G., Frati L., Wade P.A., Faggioni A., Trivedi P. Epstein-Barr virus infection leads to partial phenotypic reversion of terminally differentiated malignant B cells. Cancer Lett. 2009;284:165–174. doi: 10.1016/j.canlet.2009.04.025. PubMed DOI
Vrzalikova K., Vockerodt M., Leonard S., Bell A., Wei W., Schrader A., Wright K.L., Kube D., Rowe M., Woodman C.B., Murray P.G. Down-regulation of BLIMP1α by the EBV oncogene LMP1 disrupts the plasma cell differentiation program and prevents viral replication in B cells: Implications for the pathogenesis of EBV-associated B cell lymphomas. Blood. 2011;117:5907–5917. doi: 10.1182/blood-2010-09-307710. PubMed DOI PMC
Leonard S., Wei W., Anderton J., Vockerodt M., Rowe M., Murray P.G., Woodman C.B.J. An investigation of the epigenetic and transcriptional changes which follow Epstein-Barr virus infection of germinal centre B cells and their relevance to the pathogenesis of Hodgkin’s lymphoma. J. Virol. 2011;85:9568–9577. PubMed PMC
Shimshon L., Michaeli A., Hadar R., Nutt S.L., David Y., Navon A., Waisman A., Tirosh B. SUMOylation of Blimp-1 promotes its proteasomal degradation. FEBS Lett. 2011;585:2405–2409. doi: 10.1016/j.febslet.2011.06.022. PubMed DOI
Ying H.Y., Su S.T., Hsu P.H., Chang C.C., Lin I.Y., Tseng Y.H., Tsai M.D., Shih H.M., Lin K.I. SUMOylation of Blimp-1 is critical for plasma cell differentiation. EMBO Rep. 2012 (Epub ahead of print) PubMed PMC
Schmidt D., Nayak A., Schumann J.E., Schimpl A., Berberich I., Berberich-Siebelt F. Blimp-1Deltaexon7: A naturally occurring Blimp-1 deletion mutant with auto-regulatory potential. Exp. Cell Res. 2008;314:3614–3627. doi: 10.1016/j.yexcr.2008.09.008. PubMed DOI
Smith M.A., Maurin M., Cho H.I., Becknell B., Freud A.G., Yu J., Wei S., Djeu J., Celis E., Caligiuri M.A., Wright K.L. PRDM1/Blimp-1 controls effector cytokine production in human NK cells. J. Immunol. 2010;185:6058–6067. doi: 10.4049/jimmunol.1001682. PubMed DOI PMC
Abbondanza C., De Rosa C., D'Arcangelo A., Pacifico M., Spizuoco C., Piluso G., Di Zazzo E., Gazzerro P., Medici N., Moncharmont B., Puca GA. Identification of a functional estrogen-responsive enhancer element in the promoter 2 of PRDM2 gene in breast cancer cell lines. J. Cell Physiol. 2012;227:964–975. doi: 10.1002/jcp.22803. PubMed DOI
Tunyaplin C., Shapiro M.A., Calame K.L. Characterization of the B lymphocyte induced maturation protein-1 (Blimp-1) gene, mRNA isoforms and basal promoter. Nucleic Acids Res. 2000;28:4846–4855. doi: 10.1093/nar/28.24.4846. PubMed DOI PMC
Buettner M., Greiner A., Avramidou A., Jäck H.M., Niedobitek G. Evidence of abortive plasma cell differentiation in Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma. Hematol. Oncol. 2005;23:127–132. doi: 10.1002/hon.764. PubMed DOI
Cattoretti G., Angelin-Duclos C., Shaknovich R., Zhou H., Wang D., Alobeid B. PRDM1/Blimp-1 is expressed in human B-lymphocytes committed to the plasma cell lineage. J. Pathol. 2005;206:76–86. doi: 10.1002/path.1752. PubMed DOI
Garcia J.F., Roncador G., García J.F., Sánz A.I., Maestre L., Lucas E., Montes-Moreno S., Fernandez Victoria R., Martinez-Torrecuadrara J.L., Marafioti T., Mason D.Y., Piris M.A. PRDM1/BLIMP-1 expression in multiple B and T-cell lymphoma. Haematologica. 2006;91:467–474. PubMed
Natkunam Y., Hsi E.D., Aoun P., Zhao S., Elson P., Pohlman B., Naushad H., Bast M., Levy R., Lossos I.S. Expression of the human germinal center-associated lymphoma (HGAL) protein identifies a subset of classic Hodgkin lymphoma of germinal center derivation and improved survival. Blood. 2007;109:298–305. doi: 10.1182/blood-2006-04-014977. PubMed DOI PMC
Kamesaki H., Fukuhara S., Tatsumi E., Uchino H., Yamabe H., Miwa H., Shirakawa S., Hatanaka M., Honjo T. Cytochemical, immunologic, chromosomal, and molecular genetic analysis of a novel cell line derived from Hodgkin's disease. Blood. 1986;68:285–292. PubMed
Schaadt M., Diehl V., Stein H., Fonatsch C., Kirchner H.H. Two neoplastic cell lines with unique features derived from Hodgkin's disease. Int. J. Cancer. 1980;26:723–731. doi: 10.1002/ijc.2910260605. PubMed DOI
Drexler H.G., Gignac S.M., Hoffbrand A.V., Leber B.F., Norton J., Lok M.S., Minowada J. Characterization of Hodgkin's disease derived cell line HDLM-2. Recent Results Cancer Res. 1989;117:75–82. doi: 10.1007/978-3-642-83781-4_8. PubMed DOI
Bargou R.C., Mapara M.Y., Zugck C., Daniel P.T., Pawlita M., Döhner H., Dörken B. Characterization of a novel Hodgkin cell line, HD-MyZ, with myelomonocytic features mimicking Hodgkin's disease in severe combined immunodeficient mice. J. Exp. Med. 1993;177:1257–1268. doi: 10.1084/jem.177.5.1257. PubMed DOI PMC
Wolf J., Kapp U., Bohlen H., Kornacker M., Schoch C., Stahl B., Mucke S., von Kalle C., Fonatsch C., Schaefer H.E., Hansmann M.L., Diehl V. Peripheral blood mononuclear cells of a patient with advanced Hodgkin's lymphoma give rise to permanently growing Hodgkin-Reed Sternberg cells. Blood. 1996;87:3418–3428. PubMed
Drexler H.G., Leber B.F., Norton J., Yaxley J., Tatsumi E., Hoffbrand A.V., Minowada J. Genotypes and immunophenotypes of Hodgkin's disease-derived cell lines. Leukemia. 1988;2:371–376. PubMed
Diehl V., Kirchner H.H., Burrichter H., Stein H., Fonatsch C., Gerdes J., Schaadt M., Heit W., Uchanska-Ziegler B., Ziegler A., Heintz F., Sueno K. Characteristics of Hodgkin's disease-derived cell lines. Canc. Treat. Rep. 1982;66:615–632. PubMed
Cohen J.H., Revillard J.P., Magaud J.P., Lenoir G., Vuillaume M., Manel A.M., Vincent C., Bryon P.A. B-cell maturation stages of Burkitt's lymphoma cell lines according to Epstein-Barr virus status and type of chromosome translocation. J. Natl. Cancer Inst. 1987;78:235–242. PubMed
Magrath I.T., Freeman C.B., Pizzo P., Gadek J., Jaffe E., Santaella M., Hammer C., Frank M., Reaman G., Novikovs L. Characterization of lymphoma-derived cell lines: Comparison of cell lines positive and negative for Epstein-Barr virus nuclear antigen. II. Surface markers. J. Natl.Cancer Inst. 1980;64:477–483. PubMed
Klein G., Lindahl T., Jondal M., Leibold W., Menezes J., Nilsson K., Sundstrom C. Continuous lymphoid cell lines with characteristics of B cells, lacking the EBV genome and derived from three human lymphomas. Proc. Natl. Acad. Sci. USA. 1974;71:3283–3286. doi: 10.1073/pnas.71.8.3283. PubMed DOI PMC
Klein G., Dombos L., Gothosokar B. Sensitivity of Epstein-Barr virus (EBV) producer and non-producer human lymphoblastoid cell lines to superinfection of with EB-virus. Int. J. Cancer. 1972;10:44–57. doi: 10.1002/ijc.2910100108. PubMed DOI
Epstein M.A., Achong Y.M., Barr Y., Zajac B., Henle G., Henle W. Morphological and virological investigations on cultured Burkitt tumor lymphoblasts (strain Raji) J. Natl. Cancer Inst. 1966;37:547–559. PubMed
King W., Thomas-Poweil A.L., Raab-Traub N., Hawke M., Kieff E. Epstein-Barr virus RNA. V. Viral RNA in a restringently infected, growth-transformed cell line. J. Virol. 1980;36:506–518. PubMed PMC
Klein G., Dombos L. Relationship between the sensitivity of EBV-carrying lymphoblastoid lines to superinfection and the inducibility of the resident viral genome. Int. J. Cancer. 1973;11:327–337. doi: 10.1002/ijc.2910110210. PubMed DOI
Tweeddale M.E., Lim B., Jamal N., Robinson J., Zalcberg J., Lockwood G., Minden M.D., Messner H.A. The presence of clonogenic cells in high-grade malignant lymphoma: A prognostic factor. Blood. 1987;69:1307–1314. PubMed
Nilsson K., Bennich H., Johansson S.G., Pontén J. Established immunoglobulin producing myeloma (IgE) and lymphoblastoid (IgG) cell lines from an IgE myeloma patient. Clin. Exp. Immunol. 1970;7:477–489. PubMed PMC
Bell A.I., Groves K., Kelly G.L., Croom-Carter D., Hui E., Chan A.T., Rickinson A.B. Analysis of Epstein-Barr virus latent gene expression in endemic Burkitt's lymphoma and nasopharyngeal carcinoma tumour cells by using quantitative real-time PCR assays. J. Gen. Virol. 2006;87:2885–2890. doi: 10.1099/vir.0.81906-0. PubMed DOI
Murray P.G., Qiu G.H., Fu L., Waites E.R., Srivastava G., Heys D., Agathanggelou A., Latif F., Grundy R.G., Mann J.R., Starczynski J., Crocker J., Parkes S.E., Ambinder R.F., Young L.S., Tao Q. Frequent epigenetic inactivation of the RASSF1A tumor suppressor gene in Hodgkin’s lymphoma. Oncogene. 2004;23:1326–1331. PubMed
Murray P.G., Fan Y., Davies G., Ying J., Geng H., Ng K.M., Li H., Gao Z., Kapatai G., Bose S., Anderton J.A., Reynolds G.M., Ito A., Woodman C.B.J., Marafioti T., Ambinder R.F., Tao Q. Epigenetic silenncing of a proapoptotic cell adhesion molecule-the immunoglobulin superfamily member IGSF4 by promoter CpG methylation protects Hodgkin’s lymphoma cells from apoptosis. Am. J. Pathol. 2010;177:1480–1490. PubMed PMC
Epstein-Barr Virus and the Pathogenesis of Diffuse Large B-Cell Lymphoma