Epstein-Barr Virus and the Pathogenesis of Diffuse Large B-Cell Lymphoma
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund Project
N/A
Blood Cancer UK and the Cancer Research UK Birmingham Centre, University of Birmingham, Birmingham, United Kingdom
PubMed
36836878
PubMed Central
PMC9967091
DOI
10.3390/life13020521
PII: life13020521
Knihovny.cz E-resources
- Keywords
- Epstein–Barr virus, chronic inflammation, diffuse large B-cell lymphoma, tumour microenvironment,
- Publication type
- Journal Article MeSH
- Review MeSH
Epstein-Barr virus (EBV), defined as a group I carcinogen by the World Health Organization (WHO), is present in the tumour cells of patients with different forms of B-cell lymphoma, including Burkitt lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disorders, and, most recently, diffuse large B-cell lymphoma (DLBCL). Understanding how EBV contributes to the development of these different types of B-cell lymphoma has not only provided fundamental insights into the underlying mechanisms of viral oncogenesis, but has also highlighted potential new therapeutic opportunities. In this review, we describe the effects of EBV infection in normal B-cells and we address the germinal centre model of infection and how this can lead to lymphoma in some instances. We then explore the recent reclassification of EBV+ DLBCL as an established entity in the WHO fifth edition and ICC 2022 classifications, emphasising the unique nature of this entity. To that end, we also explore the unique genetic background of this entity and briefly discuss the potential role of the tumour microenvironment in lymphomagenesis and disease progression. Despite the recent progress in elucidating the mechanisms of this malignancy, much work remains to be done to improve patient stratification, treatment strategies, and outcomes.
Department of Medical Biotechnologies Section of Pathology University of Siena 53100 Siena Italy
Health Research Institute and School of Medicine University of Limerick V94 T9PX Limerick Ireland
Institute of Immunology and Immunotherapy University of Birmingham Birmingham B15 2TT UK
See more in PubMed
Chabay P. Advances in the Pathogenesis of EBV-Associated Diffuse Large B Cell Lymphoma. Cancers. 2021;13:2717. doi: 10.3390/cancers13112717. PubMed DOI PMC
Soltani S., Zakeri A., Tabibzadeh A., Zakeri A.M., Zandi M., Siavoshi S., Seifpour S., Farahani A. A review on EBV encoded and EBV-induced host microRNAs expression profile in different lymphoma types. Mol. Biol. Rep. 2021;48:1801–1817. doi: 10.1007/s11033-021-06152-z. PubMed DOI
Alaggio R., Amador C., Anagnostopoulos I., Attygalle A.D., Araujo I.B.D.O., Berti E., Bhagat G., Borges A.M., Boyer D., Calaminici M. The 5th edition of the World Health Organization classification of haematolymphoid tumours: Lymphoid neoplasms. Leukemia. 2022;36:1720–1748. doi: 10.1038/s41375-022-01620-2. PubMed DOI PMC
Crump M., Neelapu S.S., Farooq U., Van Den Neste E., Kuruvilla J., Westin J., Link B.K., Hay A., Cerhan J.R., Zhu L. Outcomes in refractory diffuse large B-cell lymphoma: Results from the international SCHOLAR-1 study. Blood J. Am. Soc. Hematol. 2017;130:1800–1808. doi: 10.1182/blood-2017-03-769620. PubMed DOI PMC
Muris J., Ylstra B., Cillessen S., Ossenkoppele G., Kluin-Nelemans J., Eijk P., Nota B., Tijssen M., De Boer W., Van De Wiel M. Profiling of apoptosis genes allows for clinical stratification of primary nodal diffuse large B-cell lymphomas. Br. J. Haematol. 2007;136:38–47. doi: 10.1111/j.1365-2141.2006.06375.x. PubMed DOI
Nowakowski G.S., Czuczman M.S. ABC, GCB, and double-hit diffuse large B-cell lymphoma: Does subtype make a difference in therapy selection? Am. Soc. Clin. Oncol. Educ. Book. 2015;35:e449–e457. doi: 10.14694/EdBook_AM.2015.35.e449. PubMed DOI
Rickinson A.B., Kieff E. Epstein-Barr Virus. In: Field B.N., Knipe D.M., Howley P.M., editors. Fields Virology. 3rd ed. Lippincott-Raven Publishers; Philadelphia, PA, USA: 1996. pp. 2397–2446.
Baer R., Bankier A.T., Biggin M.D., Deininger P.L., Farrell P.J., Gibson T.J., Hatfull G., Hudson G.S., Satchwell S.C., Séguin C., et al. DNA sequence and expression of the B95-8 Epstein—Barr virus genome. Nature. 1984;310:207–211. doi: 10.1038/310207a0. PubMed DOI
de Jesus O., Smith P.R., Spender L.C., Karstegl C.E., Niller H.H., Huang D., Farrell P.J. Updated Epstein–Barr virus (EBV) DNA sequence and analysis of a promoter for the BART (CST, BARF0) RNAs of EBV. J. Gen. Virol. 2003;84:1443–1450. doi: 10.1099/vir.0.19054-0. PubMed DOI
Uner A., Akyurek N., Saglam A., Abdullazade S., Uzum N., Onder S., Barista I., Benekli M. The presence of Epstein–Barr virus (EBV) in diffuse large B-cell lymphomas (DLBCLs) in Turkey: Special emphasis on ‘EBV-positive DLBCL of the elderly’. Apmis. 2011;119:309–316. doi: 10.1111/j.1600-0463.2011.02736.x. PubMed DOI
Song C.-G., Huang J.-J., Li Y.-J., Xia Y., Wang Y., Bi X.-W., Jiang W.-Q., Huang H.-Q., Lin T.-Y., Li Z.-M. Epstein-barr virus-positive diffuse large B-cell lymphoma in the elderly: A matched case-control analysis. PLoS ONE. 2015;10:e0133973. doi: 10.1371/journal.pone.0133973. PubMed DOI PMC
Swerdlow S.H., Campo E., Harris N.L., Jaffe E.S., Pileri S.A., Stein H., Thiele J., Vardiman J.W. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Volume 2 IARC Press; Lyon, France: 2008.
Shannon-Lowe C., Rickinson A.B., Bell A.I. Epstein–Barr virus-associated lymphomas. Philos. Trans. R. Soc. B Biol. Sci. 2017;372:20160271. doi: 10.1098/rstb.2016.0271. PubMed DOI PMC
Malpica L., Marques-Piubelli M.L., Beltran B.E., Chavez J.C., Miranda R.N., Castillo J.J. EBV-positive diffuse large B-cell lymphoma, not otherwise specified: 2022 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2022;97:951–965. doi: 10.1002/ajh.26579. PubMed DOI
Ehlers B., Spieß K., Leendertz F., Peeters M., Boesch C., Gatherer D., McGeoch D.J. Lymphocryptovirus phylogeny and the origins of Epstein-Barr virus. J. Gen. Virol. 2009;91:630–642. doi: 10.1099/vir.0.017251-0. PubMed DOI
Epstein M.A., Achong B.G., Barr Y.M. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964;283:702–703. doi: 10.1016/S0140-6736(64)91524-7. PubMed DOI
Henle G., Henle W., Diehl V. Relation of Burkitt’s tumor-associated herpes-type virus to infectious mononucleosis. Proc. Natl. Acad. Sci. USA. 1968;59:94–101. doi: 10.1073/pnas.59.1.94. PubMed DOI PMC
Abate F., Ambrosio M.R., Mundo L., Laginestra M.A., Fuligni F., Rossi M., Zairis S., Gazaneo S., De Falco G., Lazzi S., et al. Distinct viral and mutational spectrum of endemic Burkitt lymphoma. PLoS Pathog. 2015;11:e1005158. doi: 10.1371/journal.ppat.1005158. PubMed DOI PMC
Henle G., Henle W., Clifford P., Diehl V., Kafuko G.W., Kirya B.G., Klein G., Morrow R.H., Munube G.M., Pike P. Antibodies to Epstein-Barr virus in Burkitt’s lymphoma and control groups. J. Natl. Cancer Inst. 1969;43:1147–1157. doi: 10.1093/jnci/43.5.1147. PubMed DOI
Niederman J.C., Miller G., Pearson H.A., Pagano J.S., Dowaliby J.M. Infectious Mononucleosis: Epstein–Barr-Virus Shedding in Saliva and the Oropharynx. N. Engl. J. Med. 1976;294:1355–1359. doi: 10.1056/NEJM197606172942501. PubMed DOI
Henle W., Diehl V., Kohn G., zur Hausen H., Henle G. Herpes-Type virus and chromosome marker in normal Leukocytes after growth with irradiated Burkitt cells. Science. 1967;157:1064–1065. doi: 10.1126/science.157.3792.1064. PubMed DOI
Pope J.H. Establishment of cell lines from peripheral Leucocytes in infectious Mononucleosis. Nature. 1967;216:810–811. doi: 10.1038/216810a0. PubMed DOI
Rowe M., Fitzsimmons L., Bell A.I. Epstein-Barr virus and Burkitt lymphoma. Chin. J. Cancer. 2014;33:609. doi: 10.5732/cjc.014.10190. PubMed DOI PMC
Neri A., Barriga F., Inghirami G., Knowles D.M., Neequaye J., Magrath I.T., Dalla-Favera R. Epstein-Barr virus infection precedes clonal expansion in Burkitt’s and acquired immunodeficiency syndrome-associated lymphoma [see comments] Blood. 1991;77:1092–1095. doi: 10.1182/blood.V77.5.1092.1092. PubMed DOI
Brady G., MacArthur G., Farrell P. Epstein–Barr virus and Burkitt lymphoma. Postgrad. Med. J. 2008;84:372–377. doi: 10.1136/jcp.2007.047977. PubMed DOI
Jha H.C., Pei Y., Robertson E.S. Epstein–Barr virus: Diseases linked to infection and transformation. Front. Microbiol. 2016;7:1602. doi: 10.3389/fmicb.2016.01602. PubMed DOI PMC
Thompson M.P., Kurzrock R. Epstein-Barr virus and cancer. Clin. Cancer Res. 2004;10:803–821. doi: 10.1158/1078-0432.CCR-0670-3. PubMed DOI
Kerr B.M., Lear A.L., Rowe M., Croom-Carter D., Young L.S., Rookes S.M., Gallimore P.H., Rickinson A.B. Three transcriptionally distinct forms of epstein-barr virus latency in somatic cell hybrids: Cell phenotype dependence of virus promoter usage. Virology. 1992;187:189–201. doi: 10.1016/0042-6822(92)90307-B. PubMed DOI
Pfeffer S. Identification of virus-encoded MicroRNAs. Science. 2004;304:734–736. doi: 10.1126/science.1096781. PubMed DOI
Barth S., Meister G., Grässer F.A. EBV-encoded miRNAs. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 2011;1809:631–640. doi: 10.1016/j.bbagrm.2011.05.010. PubMed DOI
Raab-Traub N. Novel mechanisms of EBV-induced oncogenesis. Curr. Opin. Virol. 2012;2:453–458. doi: 10.1016/j.coviro.2012.07.001. PubMed DOI PMC
Ok C.Y., Papathomas T.G., Medeiros L.J., Young K.H. EBV-positive diffuse large B-cell lymphoma of the elderly. Blood J. Am. Soc. Hematol. 2013;122:328–340. doi: 10.1182/blood-2013-03-489708. PubMed DOI PMC
Wang W.-T., Guo J.-R., Wang L., Wu J.-Z., Shen H.-R., Kong Y.-L., Xia Y., Li J.-Y., Liang J.-H., Xu W. EBV-Mir-BART5-5p targets p53 independent pathway in cytoplasm: Potential role in EBV lymphomagenesis. Genes Dis. 2022 doi: 10.1016/j.gendis.2022.07.003. in press . PubMed DOI PMC
Crawford D.H., Macsween K.F., Higgins C.D., Thomas R., McAulay K., Williams H., Harrison N., Reid S., Conacher M., Douglas J., et al. A cohort study among university students: Identification of risk factors for Epstein-Barr virus Seroconversion and infectious Mononucleosis. Clin. Infect. Dis. 2006;43:276–282. doi: 10.1086/505400. PubMed DOI
Crawford D.H., Swerdlow A.J., Higgins C., McAulay K., Harrison N., Williams H., Britton K., Macsween K.F. Sexual history and Epstein-Barr virus infection. J. Infect. Dis. 2002;186:731–736. doi: 10.1086/342596. PubMed DOI
Higgins C.D., Swerdlow A.J., Macsween K.F., Harrison N., Williams H., McAulay K., Thomas R., Reid S., Conacher M., Britton K., et al. A study of risk factors for acquisition of Epstein-Barr virus and its subtypes. J. Infect. Dis. 2007;195:474–482. doi: 10.1086/510854. PubMed DOI
Nemerow G., Mold C., Schwend V.K., Tollefson V., Cooper N. Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: Sequence homology of gp350 and C3 complement fragment C3d. J. Virol. 1987;61:1416–1420. doi: 10.1128/jvi.61.5.1416-1420.1987. PubMed DOI PMC
Li Q., Spriggs M.K., Kovats S., Turk S.M., Comeau M.R., Nepom B., Hutt-Fletcher L.M. Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J. Virol. 1997;71:4657–4662. doi: 10.1128/jvi.71.6.4657-4662.1997. PubMed DOI PMC
Babcock G.J., Decker L.L., Volk M., Thorley-Lawson D.A. EBV persistence in memory B cells in vivo. Immunity. 1998;9:395–404. doi: 10.1016/S1074-7613(00)80622-6. PubMed DOI
Kurth J., Spieker T., Wustrow J., Strickler J.G., Hansmann M.-L., Rajewsky K., Küppers R. EBV-Infected B cells in infectious Mononucleosis. Immunity. 2000;13:485–495. doi: 10.1016/S1074-7613(00)00048-0. PubMed DOI
Kurth J., Hansmann M.L., Rajewsky K., Kuppers R. Epstein-Barr virus-infected B cells expanding in germinal centers of infectious mononucleosis patients do not participate in the germinal center reaction. Proc. Natl. Acad. Sci. USA. 2003;100:4730–4735. doi: 10.1073/pnas.2627966100. PubMed DOI PMC
Dunmire S.K., Verghese P.S., Balfour Jr H.H. Primary epstein-barr virus infection. J. Clin. Virol. 2018;102:84–92. doi: 10.1016/j.jcv.2018.03.001. PubMed DOI
Odumade O.A., Hogquist K.A., Balfour Jr H.H. Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin. Microbiol. Rev. 2011;24:193–209. doi: 10.1128/CMR.00044-10. PubMed DOI PMC
Altmann M., Hammerschmidt W. Epstein-Barr virus provides a new paradigm: A requirement for the immediate inhibition of apoptosis. PLoS Biol. 2005;3:e404. doi: 10.1371/journal.pbio.0030404. PubMed DOI PMC
Babcock G.J., Hochberg D., Thorley-Lawson D.A. The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity. 2000;13:497–506. doi: 10.1016/S1074-7613(00)00049-2. PubMed DOI
Gires O., Zimber-Strobl U., Gonnella R., Ueffing M., Marschall G., Zeidler R., Pich D., Hammerschmidt W. Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. EMBO J. 1997;16:6131–6140. doi: 10.1093/emboj/16.20.6131. PubMed DOI PMC
Caldwell R.G., Wilson J.B., Anderson S.J., Longnecker R. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity. 1998;9:405–411. doi: 10.1016/S1074-7613(00)80623-8. PubMed DOI
Laichalk L.L., Thorley-Lawson D.A. Terminal differentiation into plasma cells initiates the Replicative cycle of Epstein-Barr virus in vivo. J. Virol. 2004;79:1296–1307. doi: 10.1128/JVI.79.2.1296-1307.2005. PubMed DOI PMC
Adam P., Bonzheim I., Fend F., Quintanilla-Martínez L. Epstein-Barr virus-positive diffuse large B-cell lymphomas of the elderly. Adv. Anat. Pathol. 2011;18:349–355. doi: 10.1097/PAP.0b013e318229bf08. PubMed DOI
Münz C. Epstein–Barr virus-specific immune control by innate lymphocytes. Front. Immunol. 2017;8:1658. doi: 10.3389/fimmu.2017.01658. PubMed DOI PMC
Marques-Piubelli M.L., Salas Y.I., Pachas C., Becker-Hecker R., Vega F., Miranda R.N. Epstein–Barr virus-associated B-cell lymphoproliferative disorders and lymphomas: A review. Pathology. 2020;52:40–52. doi: 10.1016/j.pathol.2019.09.006. PubMed DOI
Lu T.-X., Liang J.-H., Miao Y., Fan L., Wang L., Qu X.-Y., Cao L., Gong Q.-X., Wang Z., Zhang Z.-H. Epstein-Barr virus positive diffuse large B-cell lymphoma predict poor outcome, regardless of the age. Sci. Rep. 2015;5:12168. doi: 10.1038/srep12168. PubMed DOI PMC
Swerdlow S.H., Campo E., Harris N.L., Jaffe E.S., Pileri S.A., Stein H., Thiele J. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Volume 2 IARC Press; Lyon, France: 2017.
Swerdlow S.H., Campo E., Pileri S.A., Harris N.L., Stein H., Siebert R., Advani R., Ghielmini M., Salles G.A., Zelenetz A.D. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood J. Am. Soc. Hematol. 2016;127:2375–2390. doi: 10.1182/blood-2016-01-643569. PubMed DOI PMC
Gatter K., Pezzella F. Diffuse large B-cell lymphoma. Diagn. Histopathol. 2010;16:69–81. doi: 10.1016/j.mpdhp.2009.12.002. DOI
Diebold J. World Health Organization classification of malignant lymphomas. Exp. Oncol. 2001;23:101–103.
Said J.W. Aggressive B-cell lymphomas: How many categories do we need? Mod. Pathol. 2013;26:S42–S56. doi: 10.1038/modpathol.2012.178. PubMed DOI PMC
Pittaluga S., Jaffe E.S. T-cell/histiocyte-rich large B-cell lymphoma. Haematologica. 2010;95:352. doi: 10.3324/haematol.2009.016931. PubMed DOI PMC
Vrzalikova K., Vockerodt M., Leonard S., Bell A., Wei W., Schrader A., Wright K.L., Kube D., Rowe M., Woodman C.B. Down-regulation of BLIMP1α by the EBV oncogene, LMP-1, disrupts the plasma cell differentiation program and prevents viral replication in B cells: Implications for the pathogenesis of EBV-associated B-cell lymphomas. Blood J. Am. Soc. Hematol. 2011;117:5907–5917. doi: 10.1182/blood-2010-09-307710. PubMed DOI PMC
Vrzalikova K., Leonard S., Fan Y., Bell A., Vockerodt M., Flodr P., Wright K.L., Rowe M., Tao Q., Murray P.G. Hypomethylation and over-expression of the beta isoform of BLIMP1 is induced by Epstein-Barr virus infection of B cells; potential implications for the pathogenesis of EBV-associated lymphomas. Pathogens. 2012;1:83–101. doi: 10.3390/pathogens1020083. PubMed DOI PMC
Vrzalikova K., John Woodman C.B., Murray P.G. BLIMP1α, the master regulator of plasma cell differentiation is a tumor supressor gene in B cell lymphomas. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc. 2012;156 doi: 10.5507/bp.2012.003. PubMed DOI
Choi W.W., Weisenburger D.D., Greiner T.C., Piris M.A., Banham A.H., Delabie J., Braziel R.M., Geng H., Iqbal J., Lenz G. A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clin. Cancer Res. 2009;15:5494–5502. doi: 10.1158/1078-0432.CCR-09-0113. PubMed DOI PMC
Van Roosbroeck K., Cools J., Dierickx D., Thomas J., Vandenberghe P., Stul M., Delabie J., De Wolf-Peeters C., Marynen P., Wlodarska I. ALK-positive large B-cell lymphomas with cryptic SEC31A-ALK and NPM1-ALK fusions. Haematologica. 2010;95:509–513. doi: 10.3324/haematol.2009.014761. PubMed DOI PMC
Aukema S.M., Siebert R., Schuuring E., van Imhoff G.W., Kluin-Nelemans H.C., Boerma E.-J., Kluin P.M. Double-hit B-cell lymphomas. Blood J. Am. Soc. Hematol. 2011;117:2319–2331. doi: 10.1182/blood-2010-09-297879. PubMed DOI
Campo E., Jaffe E.S., Cook J.R., Quintanilla-Martinez L., Swerdlow S.H., Anderson K.C., Brousset P., Cerroni L., de Leval L., Dirnhofer S. The International Consensus Classification of Mature Lymphoid Neoplasms: A Report from the Clinical Advisory Committee. Blood J. Am. Soc. Hematol. 2022;140:1229–1253. doi: 10.1182/blood.2022015851. PubMed DOI PMC
Morin R.D., Arthur S.E., Hodson D.J. Molecular profiling in diffuse large B-cell lymphoma: Why so many types of subtypes? Br. J. Haematol. 2022;196:814–829. doi: 10.1111/bjh.17811. PubMed DOI
Kuze T., Nakamura N., Hashimoto Y., Sasaki Y., Abe M. The Characteristics of Epstein-Barr Virus (EBV)-positive Diffuse Large B-Cell Lymphoma: Comparison between EBV+ and EBV-Cases in Japanese Population. Jpn. J. Cancer Res. 2000;91:1233–1240. doi: 10.1111/j.1349-7006.2000.tb00909.x. PubMed DOI PMC
Oyama T., Ichimura K., Suzuki R., Suzumiya J., Ohshima K., Yatabe Y., Yokoi T., Kojima M., Kamiya Y., Taji H. Senile EBV+ B-cell lymphoproliferative disorders: A clinicopathologic study of 22 patients. Am. J. Surg. Pathol. 2003;27:16–26. doi: 10.1097/00000478-200301000-00003. PubMed DOI
Hong J., Yoon D., Suh C., Huh J., Do I.-G., Sohn I., Jo J., Jung S.-H., Hong M., Yoon H. EBV-positive diffuse large B-cell lymphoma in young adults: Is this a distinct disease entity? Ann. Oncol. 2015;26:548–555. doi: 10.1093/annonc/mdu556. PubMed DOI
Castillo J.J., Beltran B.E., Miranda R.N., Young K.H., Chavez J.C., Sotomayor E.M. EBV-positive diffuse large B-cell lymphoma of the elderly: 2016 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2016;91:529–537. doi: 10.1002/ajh.24370. PubMed DOI
Beltran B.E., Castro D., Paredes S., Miranda R.N., Castillo J.J. EBV-positive diffuse large B-cell lymphoma, not otherwise specified: 2020 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2020;95:435–445. doi: 10.1002/ajh.25760. PubMed DOI
Castillo J.J., Beltran B.E., Miranda R.N., Young K.H., Chavez J.C., Sotomayor E.M. EBV-positive diffuse large B-cell lymphoma, not otherwise specified: 2018 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2018;93:953–962. doi: 10.1002/ajh.25112. PubMed DOI
Dojcinov S.D., Fend F., Quintanilla-Martinez L. EBV-positive lymphoproliferations of B-T-and NK-cell derivation in non-immunocompromised hosts. Pathogens. 2018;7:28. doi: 10.3390/pathogens7010028. PubMed DOI PMC
Falini B., Martino G., Lazzi S. A comparison of the International Consensus and 5th World Health Organization classifications of mature B-cell lymphomas. Leukemia. 2022;37:18–34. doi: 10.1038/s41375-022-01764-1. PubMed DOI PMC
Ok C.Y., Li L., Xu-Monette Z.Y., Visco C., Tzankov A., Manyam G.C., Montes-Moreno S., Dybaer K., Chiu A., Orazi A. Prevalence and clinical implications of Epstein–Barr virus infection in de novo diffuse large B-cell lymphoma in Western countries. Clin. Cancer Res. 2014;20:2338–2349. doi: 10.1158/1078-0432.CCR-13-3157. PubMed DOI PMC
Donzel M., Bonjour M., Combes J.-D., Broussais F., Sesques P., Traverse-Glehen A., de Martel C. Lymphomas associated with Epstein-Barr virus infection in 2020: Results from a large, unselected case series in France. Eclinicalmedicine. 2022;54:101674. doi: 10.1016/j.eclinm.2022.101674. PubMed DOI PMC
Hwang J., Suh C.H., Won Kim K., Kim H.S., Armand P., Huang R.Y., Guenette J.P. The incidence of Epstein-Barr virus-positive diffuse large B-cell lymphoma: A systematic review and meta-analysis. Cancers. 2021;13:1785. doi: 10.3390/cancers13081785. PubMed DOI PMC
Gorodetskiy V., Probatova N., Obukhova T., Vasilyev V. Analysis of prognostic factors in diffuse large B-cell lymphoma associated with rheumatic diseases. Lupus Sci. Med. 2021;8:e000561. doi: 10.1136/lupus-2021-000561. PubMed DOI PMC
Gao X., Li J., Wang Y., Liu S., Yue B. Clinical characteristics and prognostic significance of EBER positivity in diffuse large B-cell lymphoma: A meta-analysis. PLoS ONE. 2018;13:e0199398. doi: 10.1371/journal.pone.0199398. PubMed DOI PMC
Mundo L., Del Porro L., Granai M., Siciliano M.C., Mancini V., Santi R., Marcar L., Vrzalikova K., Vergoni F., Di Stefano G. Frequent traces of EBV infection in Hodgkin and non-Hodgkin lymphomas classified as EBV-negative by routine methods: Expanding the landscape of EBV-related lymphomas. Mod. Pathol. 2020;33:2407–2421. doi: 10.1038/s41379-020-0575-3. PubMed DOI PMC
Cohen M., De Matteo E., Narbaitz M., Carreño F.A., Preciado M.V., Chabay P.A. Epstein–Barr virus presence in pediatric diffuse large B-cell lymphoma reveals a particular association and latency patterns: Analysis of viral role in tumor microenvironment. Int. J. Cancer. 2013;132:1572–1580. doi: 10.1002/ijc.27845. PubMed DOI
Cohen M., Narbaitz M., Metrebian F., De Matteo E., Preciado M.V., Chabay P.A. Epstein-Barr virus-positive diffuse large B-cell lymphoma association is not only restricted to elderly patients. Int. J. Cancer. 2014;135:2816–2824. doi: 10.1002/ijc.28942. PubMed DOI
Nicolae A., Pittaluga S., Abdullah S., Steinberg S.M., Pham T.A., Davies-Hill T., Xi L., Raffeld M., Jaffe E.S. EBV-positive large B-cell lymphomas in young patients: A nodal lymphoma with evidence for a tolerogenic immune environment. Blood J. Am. Soc. Hematol. 2015;126:863–872. doi: 10.1182/blood-2015-02-630632. PubMed DOI PMC
Young L.S., Rickinson A.B. Epstein–Barr virus: 40 years on. Nat. Rev. Cancer. 2004;4:757–768. doi: 10.1038/nrc1452. PubMed DOI
Kelly G., Bell A., Rickinson A. Epstein–Barr virus–associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2. Nat. Med. 2002;8:1098–1104. doi: 10.1038/nm758. PubMed DOI
Kelly G.L., Milner A.E., Tierney R.J., Croom-Carter D.S., Altmann M., Hammerschmidt W., Bell A.I., Rickinson A.B. Epstein-Barr virus nuclear antigen 2 (EBNA2) gene deletion is consistently linked with EBNA3A,-3B, and-3C expression in Burkitt’s lymphoma cells and with increased resistance to apoptosis. J. Virol. 2005;79:10709–10717. doi: 10.1128/JVI.79.16.10709-10717.2005. PubMed DOI PMC
Kelly G.L., Long H.M., Stylianou J., Thomas W.A., Leese A., Bell A.I., Bornkamm G.W., Mautner J., Rickinson A.B., Rowe M. An Epstein-Barr virus anti-apoptotic protein constitutively expressed in transformed cells and implicated in burkitt lymphomagenesis: The Wp/BHRF1 link. PLoS Pathog. 2009;5:e1000341. doi: 10.1371/journal.ppat.1000341. PubMed DOI PMC
Anderton E., Yee J., Smith P., Crook T., White R., Allday M. Two Epstein–Barr virus (EBV) oncoproteins cooperate to repress expression of the proapoptotic tumour-suppressor Bim: Clues to the pathogenesis of Burkitt’s lymphoma. Oncogene. 2008;27:421–433. doi: 10.1038/sj.onc.1210668. PubMed DOI
Cohen J.I., Wang F., Mannick J., Kieff E. Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc. Natl. Acad. Sci. USA. 1989;86:9558–9562. doi: 10.1073/pnas.86.23.9558. PubMed DOI PMC
Li C., Romero-Masters J.C., Huebner S., Ohashi M., Hayes M., Bristol J.A., Nelson S.E., Eichelberg M.R., Van Sciver N., Ranheim E.A., et al. EBNA2-deleted Epstein-Barr virus (EBV) isolate, P3HR1, causes Hodgkin-like lymphomas and diffuse large B cell lymphomas with type II and Wp-restricted latency types in humanized mice. PLoS Pathog. 2020;16:e1008590. doi: 10.1371/journal.ppat.1008590. PubMed DOI PMC
Dirmeier U., Neuhierl B., Kilger E., Reisbach G., Sandberg M.L., Hammerschmidt W. Latent membrane protein 1 is critical for efficient growth transformation of human B cells by Epstein-Barr virus. Cancer Res. 2003;63:2982–2989. doi: 10.1128/JVI.01857-20. PubMed DOI
Ma S.-D., Xu X., Plowshay J., Ranheim E.A., Burlingham W.J., Jensen J.L., Asimakopoulos F., Tang W., Gulley M.L., Cesarman E., et al. LMP1-deficient Epstein-Barr virus mutant requires T cells for lymphomagenesis. J. Clin. Investig. 2015;125:304–315. doi: 10.1172/JCI76357. PubMed DOI PMC
Ma S.-D., Tsai M.-H., Romero-Masters J.C., Ranheim E.A., Huebner S.M., Bristol J.A., Delecluse H.-J., Kenney S.C. Latent membrane protein 1 (LMP1) and LMP2A collaborate to promote Epstein-Barr virus-induced B cell lymphomas in a cord blood-humanized mouse model but are not essential. J. Virol. 2017;91:e01928-16. doi: 10.1128/JVI.01928-16. PubMed DOI PMC
White R.E., Rämer P.C., Naresh K.N., Meixlsperger S., Pinaud L., Rooney C., Savoldo B., Coutinho R., Bödör C., Gribben J. EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. J. Clin. Investig. 2012;122:1487–1502. doi: 10.1172/JCI58092. PubMed DOI PMC
Maruo S., Zhao B., Johannsen E., Kieff E., Zou J., Takada K. Epstein-Barr virus nuclear antigens 3C and 3A maintain lymphoblastoid cell growth by repressing p16INK4A and p14ARF expression. Proc. Natl. Acad. Sci. USA. 2011;108:1919–1924. doi: 10.1073/pnas.1019599108. PubMed DOI PMC
Price A.M., Dai J., Bazot Q., Patel L., Nikitin P.A., Djavadian R., Winter P.S., Salinas C.A., Barry A.P., Wood K.C. Epstein-Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection. eLife. 2017;6:e22509. doi: 10.7554/eLife.22509. PubMed DOI PMC
Romero-Masters J.C., Ohashi M., Djavadian R., Eichelberg M.R., Hayes M., Zumwalde N.A., Bristol J.A., Nelson S.E., Ma S., Ranheim E.A., et al. An EBNA3A-mutated Epstein-Barr virus retains the capacity for lymphomagenesis in a cord blood-humanized mouse model. J. Virol. 2020;94:e02168-19. doi: 10.1128/JVI.02168-19. PubMed DOI PMC
Okuno Y., Murata T., Sato Y., Muramatsu H., Ito Y., Watanabe T., Okuno T., Murakami N., Yoshida K., Sawada A. Defective Epstein–Barr virus in chronic active infection and haematological malignancy. Nat. Microbiol. 2019;4:404–413. doi: 10.1038/s41564-018-0334-0. PubMed DOI
Kimura H., Okuno Y., Sato Y., Watanabe T., Murata T. Deletion of Viral microRNAs in the Oncogenesis of Epstein–Barr Virus-Associated Lymphoma. Front. Microbiol. 2021;12:667968. doi: 10.3389/fmicb.2021.667968. PubMed DOI PMC
Lin X., Tsai M.-H., Shumilov A., Poirey R., Bannert H., Middeldorp J.M., Feederle R., Delecluse H.-J. The Epstein-Barr virus BART miRNA cluster of the M81 strain modulates multiple functions in primary B cells. PLoS Pathog. 2015;11:e1005344. doi: 10.1371/journal.ppat.1005344. PubMed DOI PMC
Mabuchi S., Hijioka F., Watanabe T., Yanagi Y., Okuno Y., Masud H., Sato Y., Murata T., Kimura H. Role of Epstein–Barr Virus C Promoter Deletion in Diffuse Large B Cell Lymphoma. Cancers. 2021;13:561. doi: 10.3390/cancers13030561. PubMed DOI PMC
Wright G.W., Phelan J.D., Coulibaly Z.A., Roulland S., Young R.M., Wang J.Q., Schmitz R., Morin R.D., Tang J., Jiang A., et al. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell. 2020;37:551–568. doi: 10.1016/j.ccell.2020.03.015. PubMed DOI PMC
Frontzek F., Staiger A.M., Wullenkord R., Grau M., Zapukhlyak M., Kurz K.S., Horn H., Erdmann T., Fend F., Richter J., et al. Molecular profiling of EBV associated diffuse large B-cell lymphoma. Leukemia. 2023:1–10. doi: 10.1038/s41375-022-01804-w. PubMed DOI PMC
Crombie J.L., LaCasce A.S. Epstein Barr virus associated B-cell lymphomas and iatrogenic lymphoproliferative disorders. Front. Oncol. 2019;9:109. doi: 10.3389/fonc.2019.00109. PubMed DOI PMC
Gebauer N., Künstner A., Ketzer J., Witte H.M., Rausch T., Benes V., Zimmermann J., Gebauer J., Merz H., Bernard V. Genomic insights into the pathogenesis of Epstein–Barr virus-associated diffuse large B-cell lymphoma by whole-genome and targeted amplicon sequencing. Blood Cancer J. 2021;11:102. doi: 10.1038/s41408-021-00493-5. PubMed DOI PMC
Gebauer N., Gebauer J., Hardel T.T., Bernard V., Biersack H., Lehnert H., Rades D., Feller A.C., Thorns C. Prevalence of targetable oncogenic mutations and genomic alterations in Epstein–Barr virus-associated diffuse large B-cell lymphoma of the elderly. Leuk. Lymphoma. 2015;56:1100–1106. doi: 10.3109/10428194.2014.944522. PubMed DOI
Ngo V.N., Young R.M., Schmitz R., Jhavar S., Xiao W., Lim K.-H., Kohlhammer H., Xu W., Yang Y., Zhao H. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470:115–119. doi: 10.1038/nature09671. PubMed DOI PMC
Jeelall Y.S., Horikawa K. Oncogenic MYD88 mutation drives Toll pathway to lymphoma. Immunol. Cell Biol. 2011;89:659–660. doi: 10.1038/icb.2011.31. PubMed DOI
Liu F., Wang Z., Zhou X., Liu Q., Chen G., Xiao H., Yin W., Nakamura S., Rao H. Genetic heterogeneity and mutational signature in Chinese Epstein-Barr virus-positive diffuse large B-cell lymphoma. PLoS ONE. 2018;13:e0201546. doi: 10.1371/journal.pone.0201546. PubMed DOI PMC
Zhou Y., Xu Z., Lin W., Duan Y., Lu C., Liu W., Su W., Yan Y., Liu H., Liu L. Comprehensive genomic profiling of EBV-positive diffuse large B-cell lymphoma and the expression and clinicopathological correlations of some related genes. Front. Oncol. 2019;9:683. doi: 10.3389/fonc.2019.00683. PubMed DOI PMC
Schaefer A., Der C.J. RHOA takes the RHOad less traveled to cancer. Trends Cancer. 2022;8:655–669. doi: 10.1016/j.trecan.2022.04.005. PubMed DOI
Kataoka K., Miyoshi H., Sakata S., Dobashi A., Couronné L., Kogure Y., Sato Y., Nishida K., Gion Y., Shiraishi Y. Frequent structural variations involving programmed death ligands in Epstein-Barr virus-associated lymphomas. Leukemia. 2019;33:1687–1699. doi: 10.1038/s41375-019-0380-5. PubMed DOI PMC
Xia Y., Zhang X. The Spectrum of MYC alterations in diffuse large B-cell lymphoma. Acta Haematol. 2020;143:520–528. doi: 10.1159/000505892. PubMed DOI
Riedell P.A., Smith S.M. Double hit and double expressors in lymphoma: Definition and treatment. Cancer. 2018;124:4622–4632. doi: 10.1002/cncr.31646. PubMed DOI
Liu H., Xu-Monette Z.Y., Tang G., Wang W., Kim Y., Yuan J., Li Y., Chen W., Li Y., Fedoriw G.Y. EBV+ high-grade B cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements: A multi-institutional study. Histopathology. 2022;80:575–588. doi: 10.1111/his.14585. PubMed DOI
Beltran B.E., Morales D., Quiñones P., Medeiros L.J., Miranda R.N., Castillo J.J. EBV-positive diffuse large b-cell lymphoma in young immunocompetent individuals. Clin. Lymphoma Myeloma Leuk. 2011;11:512–516. doi: 10.1016/j.clml.2011.07.003. PubMed DOI
Keane C., Tobin J., Gunawardana J., Francis S., Gifford G., Gabrielli S., Gill A., Stevenson W., Talaulikar D., Gould C. The tumour microenvironment is immuno-tolerogenic and a principal determinant of patient outcome in EBV-positive diffuse large B-cell lymphoma. Eur. J. Haematol. 2019;103:200–207. doi: 10.1111/ejh.13274. PubMed DOI PMC
Cohen M., Vistarop A.G., Huaman F., Narbaitz M., Metrebian F., De Matteo E., Preciado M.V., Chabay P.A. Cytotoxic response against Epstein Barr virus coexists with diffuse large B-cell lymphoma tolerogenic microenvironment: Clinical features and survival impact. Sci. Rep. 2017;7:10813. doi: 10.1038/s41598-017-11052-z. PubMed DOI PMC
Carreras J., Kikuti Y.Y., Hiraiwa S., Miyaoka M., Tomita S., Ikoma H., Ito A., Kondo Y., Itoh J., Roncador G. High PTX3 expression is associated with a poor prognosis in diffuse large B-cell lymphoma. Cancer Sci. 2022;113:334. doi: 10.1111/cas.15179. PubMed DOI PMC
Ma S.-D., Xu X., Jones R., Delecluse H.-J., Zumwalde N.A., Sharma A., Gumperz J.E., Kenney S.C. PD-1/CTLA-4 blockade inhibits Epstein-Barr virus-induced lymphoma growth in a cord blood humanized-mouse model. PLoS Pathog. 2016;12:e1005642. doi: 10.1371/journal.ppat.1005642. PubMed DOI PMC