• This record comes from PubMed

Targeted next-generation sequencing in chronic lymphocytic leukemia: a high-throughput yet tailored approach will facilitate implementation in a clinical setting

. 2015 Mar ; 100 (3) : 370-6. [epub] 20141205

Language English Country Italy Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 25480502
PubMed Central PMC4349276
DOI 10.3324/haematol.2014.109777
PII: haematol.2014.109777
Knihovny.cz E-resources

Next-generation sequencing has revealed novel recurrent mutations in chronic lymphocytic leukemia, particularly in patients with aggressive disease. Here, we explored targeted re-sequencing as a novel strategy to assess the mutation status of genes with prognostic potential. To this end, we utilized HaloPlex targeted enrichment technology and designed a panel including nine genes: ATM, BIRC3, MYD88, NOTCH1, SF3B1 and TP53, which have been linked to the prognosis of chronic lymphocytic leukemia, and KLHL6, POT1 and XPO1, which are less characterized but were found to be recurrently mutated in various sequencing studies. A total of 188 chronic lymphocytic leukemia patients with poor prognostic features (unmutated IGHV, n=137; IGHV3-21 subset #2, n=51) were sequenced on the HiSeq 2000 and data were analyzed using well-established bioinformatics tools. Using a conservative cutoff of 10% for the mutant allele, we found that 114/180 (63%) patients carried at least one mutation, with mutations in ATM, BIRC3, NOTCH1, SF3B1 and TP53 accounting for 149/177 (84%) of all mutations. We selected 155 mutations for Sanger validation (variant allele frequency, 10-99%) and 93% (144/155) of mutations were confirmed; notably, all 11 discordant variants had a variant allele frequency between 11-27%, hence at the detection limit of conventional Sanger sequencing. Technical precision was assessed by repeating the entire HaloPlex procedure for 63 patients; concordance was found for 77/82 (94%) mutations. In summary, this study demonstrates that targeted next-generation sequencing is an accurate and reproducible technique potentially suitable for routine screening, eventually as a stand-alone test without the need for confirmation by Sanger sequencing.

See more in PubMed

Fabbri G, Rasi S, Rossi D, et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med. 2011;208(7):1389–1401. PubMed PMC

Puente XS, Pinyol M, Quesada V, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475(7354):101–105. PubMed PMC

Wang L, Lawrence MS, Wan Y, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 2011;365(26):2497–2506. PubMed PMC

Quesada V, Conde L, Villamor N, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet. 2012;44(1):47–52. PubMed

Kohlmann A, Grossmann V, Klein HU, et al. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J Clin Oncol. 2010;28(24):3858–3865. PubMed

Kohlmann A, Klein HU, Weissmann S, et al. The Interlaboratory RObustness of Next-generation sequencing (IRON) study: a deep sequencing investigation of TET2, CBL and KRAS mutations by an international consortium involving 10 laboratories. Leukemia. 2011;25(12):1840–1848. PubMed

Mansouri L, Sutton LA, Ljungstrom V, et al. Feasibility of targeted next-generation sequencing of the TP53 and ATM genes in chronic lymphocytic leukemia. Leukemia. 2014;28(3):694–696. PubMed

Schuh A, Becq J, Humphray S, et al. Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood. 2012;120(20):4191–4196. PubMed

Landau DA, Carter SL, Stojanov P, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013;152(4):714–726. PubMed PMC

Landau DA, Carter SL, Getz G, et al. Clonal evolution in hematological malignancies and therapeutic implications. Leukemia. 2014;28(1):34–43. PubMed PMC

Rossi D, Khiabanian H, Spina V, et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood. 2014;123(14):2139–2147. PubMed PMC

Malcikova J, Stano-Kozubik K, Tichy B, et al. Detailed analysis of therapy-driven clonal evolution of TP53 mutations in chronic lymphocytic leukemia. Leukemia. 2014. October 28 10.1038/leu.2014.297. [Epub ahead of print] PubMed DOI PMC

Del Giudice I, Rossi D, Chiaretti S, et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica. 2012;97(3):437–441. PubMed PMC

Rossi D, Fangazio M, Rasi S, et al. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood. 2012; 119(12):2854–2862. PubMed

Mansouri L, Cahill N, Gunnarsson R, et al. NOTCH1 and SF3B1 mutations can be added to the hierarchical prognostic classification in chronic lymphocytic leukemia. Leukemia. 2013;27(2):512–514. PubMed

Rossi D, Rasi S, Spina V, et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood. 2013;121(8): 1403–1412. PubMed PMC

Schnaiter A, Paschka P, Rossi M, et al. NOTCH1, SF3B1, and TP53 mutations in fludarabine-refractory CLL patients treated with alemtuzumab: results from the CLL2H trial of the GCLLSG. Blood. 2013;122(7): 1266–1270. PubMed

Strefford JC, Sutton LA, Baliakas P, et al. Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. Leukemia. 2013;27(11):2196–2199. PubMed

Cortese D, Sutton LA, Cahill N, et al. On the way towards a ‘CLL prognostic index’: focus on TP53, BIRC3, SF3B1, NOTCH1 and MYD88 in a population-based cohort. Leukemia. 2014;28(3):710–713. PubMed

Stilgenbauer S, Schnaiter A, Paschka P, et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood. 2014;123(21):3247–3254. PubMed

Baliakas P, Hadzidimitriou A, Sutton LA, et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia. 2014. June 19 10.1038/leu.2014.196. [Epub ahead of print] PubMed DOI

Zenz T, Eichhorst B, Busch R, et al. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol. 2010;28(29):4473–4479. PubMed

Oscier DG, Rose-Zerilli MJ, Winkelmann N, et al. The clinical significance of NOTCH1 and SF3B1 mutations in the UK LRF CLL4 trial. Blood. 2013;121(3):468–475. PubMed

Trbusek M, Malcikova J. TP53 aberrations in chronic lymphocytic leukemia. Adv Exp Med Biol. 2013;792:109–31. PubMed

Jeromin S, Weissmann S, Haferlach C, et al. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia. 2014;28(1):108–117. PubMed

Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008; 111(12):5446–5456. PubMed PMC

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. 2011;17(1):10–12.

Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568–576. PubMed PMC

Ghia P, Stamatopoulos K, Belessi C, et al. Geographic patterns and pathogenetic implications of IGHV gene usage in chronic lymphocytic leukemia: the lesson of the IGHV3-21 gene. Blood. 2005;105(4):1678–1685. PubMed

Thorselius M, Krober A, Murray F, et al. Strikingly homologous immunoglobulin gene rearrangements and poor outcome in VH3-21-using chronic lymphocytic leukemia patients independent of geographic origin and mutational status. Blood. 2006;107(7):2889–2894. PubMed

Stamatopoulos K, Belessi C, Moreno C, et al. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: Pathogenetic implications and clinical correlations. Blood. 2007;109(1):259–270. PubMed

Bomben R, Dal Bo M, Capello D, et al. Molecular and clinical features of chronic lymphocytic leukaemia with stereotyped B cell receptors: results from an Italian multicentre study. Br J Haematol. 2009;144(4): 492–506. PubMed

Stankovic T, Stewart GS, Fegan C, et al. Ataxia telangiectasia mutated-deficient B-cell chronic lymphocytic leukemia occurs in pregerminal center cells and results in defective damage response and unrepaired chromosome damage. Blood. 2002;99(1):300–309. PubMed

Austen B, Powell JE, Alvi A, et al. Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL. Blood. 2005;106(9):3175–3182. PubMed

Austen B, Skowronska A, Baker C, et al. Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol. 2007;25(34):5448–5457. PubMed

Skowronska A, Austen B, Powell JE, et al. ATM germline heterozygosity does not play a role in chronic lymphocytic leukemia initiation but influences rapid disease progression through loss of the remaining ATM allele. Haematologica. 2012;97(1):142–146. PubMed PMC

Flanagan SE, Patch AM, Ellard S. Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genet Test Mol Biomarkers. 2010;14(4):533–537. PubMed

Newest 20 citations...

See more in
Medvik | PubMed

Different prognostic impact of recurrent gene mutations in chronic lymphocytic leukemia depending on IGHV gene somatic hypermutation status: a study by ERIC in HARMONY

. 2023 Feb ; 37 (2) : 339-347. [epub] 20221224

Comparative analysis of targeted next-generation sequencing panels for the detection of gene mutations in chronic lymphocytic leukemia: an ERIC multi-center study

. 2021 Mar 01 ; 106 (3) : 682-691. [epub] 20210301

TP53 aberrations in chronic lymphocytic leukemia: an overview of the clinical implications of improved diagnostics

. 2018 Dec ; 103 (12) : 1956-1968. [epub] 20181115

ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia-update on methodological approaches and results interpretation

. 2018 May ; 32 (5) : 1070-1080. [epub] 20180202

Next-generation sequencing in chronic lymphocytic leukemia: recent findings and new horizons

. 2017 Sep 19 ; 8 (41) : 71234-71248. [epub] 20170724

EGR2 mutations define a new clinically aggressive subgroup of chronic lymphocytic leukemia

. 2017 Jul ; 31 (7) : 1547-1554. [epub] 20161128

Innovation in the prognostication of chronic lymphocytic leukemia: how far beyond TP53 gene analysis can we go?

. 2016 Mar ; 101 (3) : 263-5.

Whole-exome sequencing in relapsing chronic lymphocytic leukemia: clinical impact of recurrent RPS15 mutations

. 2016 Feb 25 ; 127 (8) : 1007-16. [epub] 20151216

Find record

Citation metrics

Loading data ...

    Archiving options