Salicylanilide diethyl phosphates as potential inhibitors of some mycobacterial enzymes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25538961
PubMed Central
PMC4236894
DOI
10.1155/2014/703053
Knihovny.cz E-zdroje
- MeSH
- antituberkulotika chemie MeSH
- bakteriální proteiny * antagonisté a inhibitory chemie MeSH
- inhibitory enzymů chemie MeSH
- Mycobacterium tuberculosis enzymologie MeSH
- salicylanilidy chemie MeSH
- simulace molekulového dockingu * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antituberkulotika MeSH
- bakteriální proteiny * MeSH
- inhibitory enzymů MeSH
- salicylanilidy MeSH
Antimycobacterially active salicylanilide diethyl phosphates were evaluated to identify their potential drug target(s) for the inhibition of several mycobacterial enzymes, including isocitrate lyase, L-alanine dehydrogenase (MtAlaDH), lysine ε-aminotransferase, chorismate mutase, and pantothenate synthetase. The enzymes are related to the nongrowing state of Mycobacterium tuberculosis. Salicylanilide diethyl phosphates represent new candidates with significant inhibitory activity especially against L-alanine dehydrogenase. The most active MtAlaDH inhibitor, 5-chloro-2-[(3-chlorophenyl)carbamoyl]phenyl diethyl phosphate, has an IC50 of 4.96 µM and the best docking results. Other mycobacterial enzymes were mostly inhibited by some derivatives but at higher concentrations; isocitrate lyase showed the highest resistance to salicylanilide diethyl phosphates.
Zobrazit více v PubMed
Saifullah B., Arulselvan P., El Zowalaty M. E., et al. Development of a highly biocompatible antituberculosis nanodelivery formulation based on para-aminosalicylic acid—zinc layered hydroxide nanocomposites. The Scientific World Journal. 2014;2014 doi: 10.1155/2014/401460.401460 PubMed DOI PMC
Vinšová J., Kozic J., Krátký M., Stolaříková J., Mandíková J., Trejtnar F., Buchta V. Salicylanilide diethyl phosphates: synthesis, antimicrobial activity and cytotoxicity. Bioorganic and Medicinal Chemistry. 2014;22(2):728–737. doi: 10.1016/j.bmc.2013.12.016. PubMed DOI
Krátký M., Vinšová J., Novotná E., et al. Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. Tuberculosis. 2012;92(5):434–439. doi: 10.1016/j.tube.2012.06.001. PubMed DOI
Hatzios S. K., Bertozzi C. R. The regulation of sulfur metabolism in Mycobacterium tuberculosis . PLoS Pathogens. 2011;7(7) doi: 10.1371/journal.ppat.1002036.e1002036 PubMed DOI PMC
Krátký M., Vinšová J., Novotná E., Mandíková J., Trejtnar F., Stolaříková J. Antibacterial activity of salicylanilide 4-(trifluoromethyl)benzoates. Molecules. 2013;18(4):3674–3688. doi: 10.3390/molecules18043674. PubMed DOI PMC
Andersen A. B., Andersen P., Ljungqvist L. Structure and function of a 40,000-molecular-weight protein antigen of Mycobacterium tuberculosis . Infection and Immunity. 1992;60(6):2317–2323. PubMed PMC
Feng Z. Y., Cáceres N. E., Sarath G., Barletta R. G. Mycobacterium smegmatis L-alanine dehydrogenase (Ald) is required for proficient utilization of alanine as a sole nitrogen source and sustained anaerobic growth. Journal of Bacteriology. 2002;184(18):5001–5010. doi: 10.1128/JB.184.18.5001-5010.2002. PubMed DOI PMC
Ling B., Sun M., Bi S., Jing Z., Liu Y. Molecular dynamics simulations of the coenzyme induced conformational changes of Mycobacterium tuberculosis L-alanine dehydrogenase. Journal of Molecular Graphics and Modelling. 2012;35:1–10. doi: 10.1016/j.jmgm.2012.01.005. PubMed DOI
Betts J. C., Lukey P. T., Robb L. C., McAdam R. A., Duncan K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Molecular Microbiology. 2002;43(3):717–731. doi: 10.1046/j.1365-2958.2002.02779.x. PubMed DOI
Dube D., Tripathi S. M., Ramachandran R. Identification of in vitro inhibitors of Mycobacterium tuberculosis Lysine ε-aminotransferase by pharmacophore mapping and three-dimensional flexible searches. Medicinal Chemistry Research. 2008;17(2-7):182–188. doi: 10.1007/s00044-007-9048-1. DOI
Voskuil M. I., Visconti K. C., Schoolnik G. K. Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis. 2004;84(3-4):218–227. doi: 10.1016/j.tube.2004.02.003. PubMed DOI
Ökvist M., Dey R., Sasso S., Grahn E., Kast P., Krengel U. 1.6 Å crystal structure of the secreted chorismate mutase from Mycobacterium tuberculosis: novel fold topology revealed. Journal of Molecular Biology. 2006;357(5):1483–1499. doi: 10.1016/j.jmb.2006.01.069. PubMed DOI
White E. L., Southworth K., Ross L., et al. A novel inhibitor of Mycobacterium tuberculosis pantothenate synthetase. Journal of Biomolecular Screening. 2007;12(1):100–105. doi: 10.1177/1087057106296484. PubMed DOI
Yang Y., Gao P., Liu Y., Ji X., Gan M., Guan Y., Hao X., Li Z., Xiao C. A discovery of novel Mycobacterium tuberculosis pantothenate synthetase inhibitors based on the molecular mechanism of actinomycin D inhibition. Bioorganic and Medicinal Chemistry Letters. 2011;21(13):3943–3946. doi: 10.1016/j.bmcl.2011.05.021. PubMed DOI
Dixon G. H., Kornberg H. L. Assay methods for key enzymes of the glyoxylate cycle. Biochemical Journal. 1959;72:P3.
Tripathi S. M., Ramachandran R. Crystal structures of the Mycobacterium tuberculosis secretory antigen alanine dehydrogenase (Rv2780) in apo and ternary complex forms captures “open” and “closed” enzyme conformations. Proteins: Structure, Function and Genetics. 2008;72(3):1089–1095. doi: 10.1002/prot.22101. PubMed DOI
Tripathi S. M., Ramachandran R. Overexpression, purification, crystallization and preliminary X-ray analysis of Rv2780 from Mycobacterium tuberculosis H37Rv. Acta Crystallographica Section F: Structural Biology and Crystallization Communications. 2008;64(5):367–370. doi: 10.1107/S1744309108007653. PubMed DOI PMC
Tripathi S. M., Ramachandran R. Overexpression, purification and crystallization of lysine PubMed DOI PMC
Adepu R., Kumar K. S., Sandra S. C-N bond formation under Cu-catalysis: synthesis and in vitro evaluation of N-aryl substituted thieno[2,3-d]pyrimidin-4(3H)-ones against chorismate mutase. Bioorganic and Medicinal Chemistry. 2012;20(17):5127–5138. doi: 10.1016/j.bmc.2012.07.011. PubMed DOI
Samala G., Devi P. B., Nallangi R., Yogeeswari P., Sriram D. Development of 3-phenyl-4,5,6,7-tetrahydro-1 PubMed DOI
Wang S., Eisenberg D. Crystal structures of a pantothenate synthetase from M. tuberculosis and its complexes with substrates and a reaction intermediate. Protein Science. 2003;12(5):1097–1108. doi: 10.1110/ps.0241803. PubMed DOI PMC
Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E. UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry. 2004;25(13):1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Trott O., Olson A. J. Software news and update AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. 2010;31(2):455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
The PyMol Molecular Graphics System Version 1.1r1, Schrödinger, LLC. http://www.pymol.org.
Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates