Orphan nuclear receptor NR4A1 regulates transforming growth factor-β signaling and fibrosis
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25581517
DOI
10.1038/nm.3777
PII: nm.3777
Knihovny.cz E-resources
- MeSH
- Liver Cirrhosis, Alcoholic metabolism pathology MeSH
- Adult MeSH
- Fibroblasts metabolism MeSH
- Fibrosis MeSH
- Histone Deacetylase 1 metabolism MeSH
- Sin3 Histone Deacetylase and Corepressor Complex MeSH
- Histone Demethylases metabolism MeSH
- Wound Healing MeSH
- Idiopathic Pulmonary Fibrosis metabolism pathology MeSH
- Nuclear Receptor Subfamily 4, Group A, Member 1 genetics metabolism physiology MeSH
- Liver metabolism pathology MeSH
- Co-Repressor Proteins metabolism MeSH
- Cells, Cultured MeSH
- Skin cytology metabolism pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Lung metabolism pathology MeSH
- Repressor Proteins metabolism MeSH
- Aged MeSH
- Signal Transduction MeSH
- Case-Control Studies MeSH
- Scleroderma, Systemic metabolism pathology MeSH
- Transforming Growth Factor beta metabolism MeSH
- Sp1 Transcription Factor metabolism MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Mice MeSH
- Aged MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Histone Deacetylase 1 MeSH
- Sin3 Histone Deacetylase and Corepressor Complex MeSH
- Histone Demethylases MeSH
- Nuclear Receptor Subfamily 4, Group A, Member 1 MeSH
- Co-Repressor Proteins MeSH
- Repressor Proteins MeSH
- SIN3A transcription factor MeSH Browser
- Transforming Growth Factor beta MeSH
- Sp1 Transcription Factor MeSH
Mesenchymal responses are an essential aspect of tissue repair. Failure to terminate this repair process correctly, however, results in fibrosis and organ dysfunction. Therapies that block fibrosis and restore tissue homeostasis are not yet available for clinical use. Here we characterize the nuclear receptor NR4A1 as an endogenous inhibitor of transforming growth factor-β (TGF-β) signaling and as a potential target for anti-fibrotic therapies. NR4A1 recruits a repressor complex comprising SP1, SIN3A, CoREST, LSD1, and HDAC1 to TGF-β target genes, thereby limiting pro-fibrotic TGF-β effects. Even though temporary upregulation of TGF-β in physiologic wound healing induces NR4A1 expression and thereby creates a negative feedback loop, the persistent activation of TGF-β signaling in fibrotic diseases uses AKT- and HDAC-dependent mechanisms to inhibit NR4A1 expression and activation. Small-molecule NR4A1 agonists can overcome this lack of active NR4A1 and inhibit experimentally-induced skin, lung, liver, and kidney fibrosis in mice. Our data demonstrate a regulatory role of NR4A1 in TGF-β signaling and fibrosis, providing the first proof of concept for targeting NR4A1 in fibrotic diseases.
Center for Research of Systemic Autoimmune Diseases University Hospital Zurich Zurich Switzerland
Department of Internal Medicine 3 University of Erlangen Nuremberg Erlangen Germany
See more in PubMed
Ann Rheum Dis. 2013 Apr;72(4):621-5 PubMed
Proc Natl Acad Sci U S A. 2012 Mar 6;109 (10 ):3891-6 PubMed
Nat Med. 2007 Jun;13(6):730-5 PubMed
Cell. 2004 Feb 20;116(4):527-40 PubMed
Cancer Res. 2010 Sep 1;70(17):6824-36 PubMed
EMBO J. 1995 May 15;14(10):2199-208 PubMed
Nat Chem Biol. 2008 Sep;4(9):548-56 PubMed
Nat Rev Mol Cell Biol. 2012 Oct;13(10):616-30 PubMed
Gut. 2012 May;61(5):714-24 PubMed
Circulation. 2002 Sep 17;106(12):1530-5 PubMed
J Exp Med. 2008 May 12;205(5):1029-36 PubMed
Arthritis Rheum. 2007 Jan;56(1):334-44 PubMed
J Biol Chem. 2001 Mar 9;276(10):6983-92 PubMed
J Exp Med. 2006 Mar 20;203(3):719-29 PubMed
Cancer Res. 2010 May 1;70(9):3628-37 PubMed
Annu Rev Pathol. 2013 Jan 24;8:241-76 PubMed
Nature. 2008 May 15;453(7193):314-21 PubMed
Science. 2000 Aug 18;289(5482):1159-64 PubMed
Biochim Biophys Acta. 2013 Jul;1832(7):897-904 PubMed
Nat Med. 2010 May;16(5):544-50 PubMed
J Hepatol. 2014 Apr;60(4):782-91 PubMed
Cancer Res. 2004 Nov 1;64(21):7954-61 PubMed
Nat Commun. 2014 Mar 03;5:3388 PubMed
J Exp Med. 2011 May 9;208(5):961-72 PubMed
J Biol Chem. 2005 Apr 1;280(13):12573-84 PubMed
N Engl J Med. 2009 May 7;360(19):1989-2003 PubMed
Nat Med. 2009 Sep;15(9):1077-81 PubMed
Science. 1995 Jul 28;269(5223):532-5 PubMed
Trends Endocrinol Metab. 2006 Oct;17(8):321-7 PubMed
Sci Transl Med. 2010 Mar 17;2(23 ):23ra20 PubMed
Genesis. 2009 Jan;47(1):14-8 PubMed
Nat Commun. 2012 Mar 13;3:735 PubMed
Oncogene. 2012 Jul 5;31(27):3265-76 PubMed
Gastroenterology. 2012 Apr;142(4):938-46 PubMed
Nat Med. 2006 Sep;12(9):1048-55 PubMed
Wound Repair Regen. 2004 Jul-Aug;12(4):485-92 PubMed
J Biol Chem. 2000 Dec 22;275(51):40014-9 PubMed
Oncogene. 2006 May 18;25(21):2974-86 PubMed
Ann Rheum Dis. 2015 Mar;74(3):e20 PubMed
Am J Pathol. 2009 Feb;174(2):519-33 PubMed
J Biomed Biotechnol. 2011;2011:969618 PubMed
J Pathol. 2008 Jan;214(2):199-210 PubMed
Neuron. 1988 May;1(3):183-8 PubMed
Nat Med. 2003 Jul;9(7):964-8 PubMed
Nat Immunol. 2011 Jul 03;12(8):778-85 PubMed