Alemtuzumab in the treatment of multiple sclerosis: key clinical trial results and considerations for use
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
25584072
PubMed Central
PMC4286943
DOI
10.1177/1756285614563522
PII: 10.1177_1756285614563522
Knihovny.cz E-zdroje
- Klíčová slova
- alemtuzumab, disease-modifying therapy, efficacy, mechanism of action, multiple sclerosis, safety,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Alemtuzumab is a humanized monoclonal antibody therapy that has recently been approved in over 30 countries for patients with active relapsing-remitting multiple sclerosis. It acts by targeting CD52, an antigen primarily expressed on T and B lymphocytes, resulting in their depletion and subsequent repopulation. The alemtuzumab clinical development program used an active comparator, subcutaneous interferon beta-1a, to show that alemtuzumab is a highly efficacious disease-modifying therapy, with benefits on relapses, disability outcomes, and freedom from clinical disease and magnetic resonance imaging activity. The safety profile was consistent across studies and no new safety signals have emerged during follow-up in the extension study. Infusion-associated reactions are common with alemtuzumab, but rarely serious. Infection incidence was elevated with alemtuzumab in clinical studies; most infections were mild or moderate in severity. Autoimmune adverse events occurred in approximately a third of patients, manifesting mainly as thyroid disorders, and less frequently as immune thrombocytopenia or nephropathy. A comprehensive monitoring program lasting at least 4 years after the last alemtuzumab dose allows early detection and effective management of autoimmune adverse events. Further experience with alemtuzumab in the clinic will provide needed long-term data.
Zobrazit více v PubMed
Azzopardi L., Thompson S., Harding K., Cossburn M., Robertson N., Compston A., et al. (2014) Predicting autoimmunity after alemtuzumab treatment of multiple sclerosis. J Neurol Neurosurg Psychiatry 85: 795–798. PubMed
Baranzini S., Jeong M., Butunoi C., Murray R., Bernard C., Oksenberg J. (1999) B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J Immunol 163: 5133–5144. PubMed
Breslin S. (2007) Cytokine-release syndrome: overview and nursing implications. Clin J Oncol Nurs 11: 37–42. PubMed
CAMMS Trial Investigators, Coles A., Compston D., Selmaj K., Lake S., Moran S., et al. (2008) Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med 359: 1786–1801. PubMed
Clark R., Watanabe R., Teague J., Schlapbach C., Tawa M., Adams N., et al. (2012) Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci Transl Med 4: 117ra117. PubMed PMC
Cohen J., Barkhof F., Comi G., Hartung H., Khatri B., Montalban X., et al. (2010) Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 362: 402–415. PubMed
Cohen J., Coles A., Arnold D., Confavreux C., Fox E., Hartung H., et al. (2012) Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 380: 1819–1828. PubMed
Coles A., Arnold D., Cohen J., Fox E., Giovannoni G., Hartung H., et al. (2014) Efficacy and safety of alemtuzumab in treatment-naive patients with relapsing-remitting MS: four-year follow-up of the CARE-MS I study. Presented at 2014 Joint Meeting of Americas Committee for Treatment and Research in Multiple Sclerosis and European Committee for Treatment and Research in Multiple Sclerosis, September, Boston, MA.
Coles A., Compston A. (2014) Product licences for alemtuzumab and multiple sclerosis. Lancet 383: 867–868. PubMed
Coles A., Fox E., Vladic A., Gazda S., Brinar V., Selmaj K., et al. (2011) Alemtuzumab versus interferon beta-1a in early relapsing-remitting multiple sclerosis: post-hoc and subset analyses of clinical efficacy outcomes. Lancet Neurol 10: 338–348. PubMed
Coles A., Fox E., Vladic A., Gazda S., Brinar V., Selmaj K., et al. (2012a) Alemtuzumab more effective than interferon beta-1a at 5-year follow-up of CAMMS223 clinical trial. Neurology 78: 1069–1078. PubMed
Coles A., Twyman C., Arnold D., Cohen J., Confavreux C., Fox E., et al. (2012b) Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet 380: 1829–1839. PubMed
Coles A., Wing M., Molyneux P., Paolillo A., Davie C., Hale G., et al. (1999a) Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol 46: 296–304. PubMed
Coles A., Wing M., Smith S., Coraddu F., Greer S., Taylor C., et al. (1999b) Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet 354: 1691–1695. PubMed
Compston A., Coles A. (2008) Multiple sclerosis. Lancet 372: 1502–1517. PubMed
Confavreux C., O’Connor P., Comi G., Freedman M., Miller A., Olsson T., et al. (2014) Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 13: 247–256. PubMed
Cox A., Thompson S., Jones J., Robertson V., Hale G., Waldmann H., et al. (2005) Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. Eur J Immunol 35: 3332–3342. PubMed
Cuker A., Coles A., Sullivan H., Fox E., Goldberg M., Oyuela P., et al. (2011) A distinctive form of immune thrombocytopenia in a phase 2 study of alemtuzumab for the treatment of relapsing-remitting multiple sclerosis. Blood 118: 6299–6305. PubMed
Cuker A., Palmer J., Oyuela P., Margolin D., Bass A. (2014) Successful detection and management of immune thrombocytopenia in alemtuzumab-treated patients with active relapsing-remitting multiple sclerosis Neurology 82: P2.198.
Daniels G., Vladic A., Brinar V., Zavalishin I., Valente W., Oyuela P., et al. (2014) Alemtuzumab-related thyroid dysfunction in a phase 2 trial of patients with relapsing-remitting multiple sclerosis. J Clin Endocrinol Metab 99: 80–89. PubMed
Fletcher J., Lonergan R., Costelloe L., Kinsella K., Moran B., O’Farrelly C., et al. (2009) CD39+Foxp3+ regulatory T cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol 183: 7602–7610. PubMed
Fox R., Miller D., Phillips J., Hutchinson M., Havrdova E., Kita M., et al. (2012) Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 367: 1087–1097. PubMed
Genzyme Corporation (2007) Campath (alemtuzumab). Full prescribing information. Cambridge, MA: Available at http://www.campath.com/pdfs/Full_Prescribing_Information_Brochure.pdf [accessed 15 April 2014].
Genzyme Europe (2007) MabCampath. Summary of product characteristics. Naarden, The Netherlands: Genzyme Europe BV.
Genzyme Therapeutics (2013) LEMTRADA summary of product characteristics. Oxford, UK: Genzyme Therapeutics Ltd.
Genzyme Corporation (2014) LEMTRADA (alemtuzumab). Full prescribing information. Cambridge, MA: Genzyme Corporation; Available at http://products.sanofi.us/lemtrada/lemtrada.pdf [accessed 2 December 2014].
Gold R., Kappos L., Arnold D., Bar-Or A., Giovannoni G., Selmaj K., et al. (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367: 1098–1107. PubMed
Hale G., Rye P., Warford A., Lauder I., Brito-Babapulle A. (1993) The glycosylphosphatidylinositol-anchored lymphocyte antigen CDw52 is associated with the epididymal maturation of human spermatozoa. J Reprod Immunol 23: 189–205. PubMed
Hartung H., Arnold D., Cohen J., Coles A., Confavreux C., Fox E., et al. (2012) Lymphocyte subset dynamics following alemtuzumab treatment in the CARE-MS I study. Presented at 28th Congress of the European Committee for Research and Treatment in Multiple Sclerosis, October, Lyon, France.
Hartung H., Arnold D., Cohen J., Coles A., Fox E., Giovannoni G., et al. (2014) Efficacy and safety of alemtuzumab in patients with relapsing-remitting MS who relapsed on prior therapy: four-year follow-up of the CARE-MS II study. Presented at 2014 Joint Meeting of Americas Committee for Treatment and Research in Multiple Sclerosis and European Committee for Treatment and Research in Multiple Sclerosis, September, Boston, MA.
Hill-Cawthorne G., Button T., Tuohy O., Jones J., May K., Somerfield J., et al. (2012) Long term lymphocyte reconstitution after alemtuzumab treatment of multiple sclerosis. J Neurol Neurosurg Psychiatry 83: 298–304. PubMed
Hu Y., Turner M., Shields J., Gale M., Hutto E., Roberts B., et al. (2009) Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology 128: 260–270. PubMed PMC
Ibitoye R., Wilkins A. (2014) Thyroid papillary carcinoma after alemtuzumab therapy for MS. J Neurol 261: 1828–1829. PubMed
Isidoro L., Pires P., Rito L., Cordeiro G. (2014) Progressive multifocal leukoencephalopathy in a patient with chronic lymphocytic leukaemia treated with alemtuzumab. BMJ Case Rep. 8 January 2014. [Epub ahead of print]. DOI: 10.1136/bcr-2013-201781. PubMed DOI PMC
Jones J., Phuah C., Cox A., Thompson S., Ban M., Shawcross J., et al. (2009) IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic lymphocyte depletion with alemtuzumab (Campath-1H). J Clin Invest 119: 2052–2061. PubMed PMC
Jones J., Thompson S., Loh P., Davies J., Tuohy O., Curry A., et al. (2013) Human autoimmunity after lymphocyte depletion is caused by homeostatic T-cell proliferation. Proc Natl Acad Sci U S A 110: 20200–20205. PubMed PMC
Kappos L., Radue E., O’Connor P., Polman C., Hohlfeld R., Calabresi P., et al. (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362: 387–401. PubMed
Kasper L., Arnold D., Coles A., Hartung H., Havrdova E., Selmaj K., et al. (2013) Lymphocyte subset dynamics following alemtuzumab treatment in the CARE-MS II study. P531. Presented at 29th Congress of the European Committee for Research and Treatment in Multiple Sclerosis, October, Copenhagen, Denmark.
Kebir H., Kreymborg K., Ifergan I., Dodelet-Devillers A., Cayrol R., Bernard M., et al. (2007) Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13: 1173–1175. PubMed PMC
Keough M., Yong V. (2013) Remyelination therapy for multiple sclerosis. Neurotherapeutics 10: 44–54. PubMed PMC
King C., Ilic A., Koelsch K., Sarvetnick N. (2004) Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell 117: 265–277. PubMed
Kousin-Ezewu O., Azzopardi L., Parker R., Tuohy O., Compston A., Coles A., et al. (2014) Accelerated lymphocyte recovery after alemtuzumab does not predict multiple sclerosis activity. Neurology 82: 2158–2164. PubMed PMC
Kovarova I., Arnold D., Cohen J., Coles A., Confavreux C., Fox E., et al. (2012) Alemtuzumab pharmacokinetics and pharmacodynamics in Comparison of Alemtuzumab and Rebif® Efficacy in Multiple Sclerosis I. Presented at 23rd Meeting of the European Neurological Society, June, Prague, Czech Republic.
Krumbholz M., Derfuss T., Hohlfeld R., Meinl E. (2012) B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat Rev Neurol 8: 613–623. PubMed
Maggi E., Vultaggio A, Matucci A. (2011) Acute infusion reactions induced by monoclonal antibody therapy. Expert Rev Clin Immunol 7: 55–63. PubMed
Malmeström C., Andersson B., Lycke J. (2014) First reported case of diabetes mellitus type 1 as a possible secondary autoimmune disease following alemtuzumab treatment in MS. J Neurol 261: 2016–2018. PubMed
Margolin D., Rizzo M., Smith G., Arnold D., Coles A., Hartung H., et al. (2013) Alemtuzumab treatment has no adverse impact on sperm quality, quantity, or motility: A CARE-MS substudy. Presented at 21st World Congress of Neurology, September, Vienna, Austria.
Mayer L., Casady L., Clayton G., Oyuela P., Margolin D. (2014) Alemtuzumab infusion-associated reactions and management in multiple sclerosis. J Infus Nurs 37: 250–258.
McCombe P., Achiron A., Giovannoni G., Brinar V., Margolin D., Palmer J., et al. (2014) Pregnancy outcomes in the alemtuzumab multiple sclerosis clinical development program. Presented at 2014 Joint Meeting of Americas Committee for Treatment and Research in Multiple Sclerosis and European Committee for Treatment and Research in Multiple Sclerosis, September, Boston, MA.
McDonald W., Compston A., Edan G., Goodkin D., Hartung H., Lublin F., et al. (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann Neurol 50: 121–127. PubMed
Menge T., Stüve O., Kieseier B., Hartung H. (2014) Alemtuzumab: the advantages and challenges of a novel therapy in MS. Neurology 83: 87–97. PubMed
Meyer D., Coles A., Oyuela P., Purvis A., Margolin D. (2012) Case report of anti-glomerular basement membrane disease following alemtuzumab treatment of relapsing-remitting multiple sclerosis. Mult Scler Rel Disord 2: 60–63. PubMed
Miller T., Habek M., Coles A., Selmaj K., Margolin D., Palmer J., et al. (2014) Analysis of data from RRMS alemtuzumab-treated patients in the clinical program to evaluate incidence rates of malignancy. Presented at 2014 Joint Meeting of Americas Committee for Treatment and Research in Multiple Sclerosis and European Committee for Treatment and Research in Multiple Sclerosis, September, Boston, MA.
O’Connor P., Wolinsky J., Confavreux C., Comi G., Kappos L., Olsson T., et al. (2011) Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med 365: 1293–1303. PubMed
Paintlia M., Paintlia A., Singh A., Singh I. (2011) Synergistic activity of interleukin-17 and tumor necrosis factor-alpha enhances oxidative stress-mediated oligodendrocyte apoptosis. J Neurochem 116: 508–521. PubMed PMC
Polman C., O’Connor P., Havrdova E., Hutchinson M., Kappos L., Miller D., et al. (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354: 899–910. PubMed
Polman C., Reingold S., Edan G., Filippi M., Hartung H., Kappos L., et al. (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the ‘McDonald Criteria’. Ann Neurol 58: 840–846. PubMed
Rao S., Sancho J., Campos-Rivera J., Boutin P., Severy P., Weeden T., et al. (2012) Human peripheral blood mononuclear cells exhibit heterogeneous CD52 expression levels and show differential sensitivity to alemtuzumab mediated cytolysis. PLoS One 7: e39416. PubMed PMC
Tuohy O., Costelloe L., Hill-Cawthorne G., Bjornson I., Harding K., Robertson N., et al. (2014) Alemtuzumab treatment of multiple sclerosis: long-term safety and efficacy. J Neurol Neurosurg Psychiatry. 21 May 2014. [Epub ahead of print]. DOI: 10.1136/jnnp-2014-307721. PubMed DOI
Turner M., Lamorte M., Chretien N., Havari E., Roberts B., Kaplan J., et al. (2013) Immune status following alemtuzumab treatment in human CD52 transgenic mice. J Neuroimmunol 261: 29–36. PubMed
Twyman C., Oyuela P., Palmer J., Margolin D., Dayan C. (2014) Thyroid autoimmune adverse events in patients treated with alemtuzumab for relapsing-remitting multiple sclerosis: four-year follow-up of the CARE-MS studies Neurology 82: P2.199.
Vermersch P., Czlonkowska A., Grimaldi L., Confavreux C., Comi G., Kappos L., et al. (2013) Teriflunomide versus subcutaneous interferon beta-1a in patients with relapsing multiple sclerosis: a randomised, controlled phase 3 trial. Mult Scler 20: 705–716. PubMed
Viglietta V., Baecher-Allan C., Weiner H., Hafler D. (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199: 971–979. PubMed PMC
Waggoner J., Martinu T., Palmer S. (2009) Progressive multifocal leukoencephalopathy following heightened immunosuppression after lung transplant. J Heart Lung Transplant 28: 395–398. PubMed PMC
Wray S., Arnold D., Cohen J., Coles A., Confavreux C., Fox E., et al. (2013a) Comparison of infection risk with alemtuzumab and SC IFNB-1a in patients with multiple sclerosis who experienced disease activity while on prior therapy (CARE-MS II). Neurology 80: P01.172.
Wray S., Arnold D., Cohen J., Coles A., Fox E., Hartung H., et al. (2013b) Herpes infection risk reduced with acyclovir prophylaxis after alemtuzumab. Annual Meeting of the Consortium of Multiple Sclerosis Centers (CMSC), May–June, 2013, Orlando, FL, Poster DX60.
Wynn D., Arnold D., Coles A., Hartung H., Havrdova E., Selmaj K., et al. (2013) Detection, incidence, and management of glomerulonephritis in the alemtuzumab clinical development program. Presented at 29th Congress of the European Committee for Research and Treatment in Multiple Sclerosis, October, Copenhagen, Denmark.
Yamout B., Issa Z., Herlopian A., El Bejjani M., Khalifa A., Ghadieh A., et al. (2013) Predictors of quality of life among multiple sclerosis patients: a comprehensive analysis. Eur J Neurol 20: 756–764. PubMed
Zhang X., Tao Y., Chopra M., Ahn M., Marcus K., Choudhary N., et al. (2013) Differential reconstitution of T cell subsets following immunodepleting treatment with alemtuzumab (anti-CD52 monoclonal antibody) in patients with relapsing-remitting multiple sclerosis. J Immunol 191: 5867–5874. PubMed
Zozulya A., Wiendl H. (2008) The role of regulatory T cells in multiple sclerosis. Nat Clin Pract Neurol 4: 384–398. PubMed