Efficient synthesis of a maghemite/gold hybrid nanoparticle system as a magnetic carrier for the transport of platinum-based metallotherapeutics

. 2015 Jan 16 ; 16 (1) : 2034-51. [epub] 20150116

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25603182

The preparation and thorough characterization of a hybrid magnetic carrier system for the possible transport of activated platinum-based anticancer drugs, as demonstrated for cisplatin (cis-[Pt(NH3)2Cl2], CDDP), are described. The final functionalized mag/Au-LA-CDDP* system consists of maghemite/gold nanoparticles (mag/Au) coated by lipoic acid (HLA; LA stands for deprotonated form of lipoic acid) and functionalized by activated cisplatin in the form of cis-[Pt(NH3)2(H2O)2]2+ (CDDP*). The relevant techniques (XPS, EDS, ICP-MS) proved the incorporation of the platinum-containing species on the surface of the studied hybrid system. HRTEM, TEM and SEM images showed the nanoparticles as spherical with an average size of 12 nm, while their superparamagnetic feature was proven by 57Fe Mössbauer spectroscopy. In the case of mag/Au, mag/Au-HLA and mag/Au-LA-CDDP*, weaker magnetic interactions among the Fe3+ centers of maghemite, as compared to maghemite nanoparticles (mag), were detected, which can be associated with the non-covalent coating of the maghemite surface by gold. The pH and time-dependent stability of the mag/Au-LA-CDDP* system in different media, represented by acetate (pH 5.0), phosphate (pH 7.0) and carbonate (pH 9.0) buffers and connected with the release of the platinum-containing species, showed the ability of CDDP* to be released from the functionalized nanosystem.

Zobrazit více v PubMed

Oberoi H.S., Nukolova N.V., Kabanov A.V., Bronich T.K. Nanocarriers for delivery of platinum anticancer drugs. Adv. Drug Deliv. Rev. 2013;35:1667–1685. doi: 10.1016/j.addr.2013.09.014. PubMed DOI PMC

Butler J.S., Sadler P.J. Targeted delivery of platinum-based anticancer complexes. Curr. Opin. Chem. Biol. 2013;17:175–188. PubMed

Barry N.P.E., Sadler P.J. Challenges for metals in medicine: How nanotechnology may help to shape the future. ACS Nano. 2013;7:5654–5659. doi: 10.1021/nn403220e. PubMed DOI

Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer. 2007;7:573–584. doi: 10.1038/nrc2167. PubMed DOI

Tassa C., Shaw S.Y., Weissleder R. Dextran-coated iron oxide nanoparticles: A versatile platform for targeted molecular imaging, molecular diagnostics and therapy. Acc. Chem. Res. 2011;44:842–852. doi: 10.1021/ar200084x. PubMed DOI PMC

Xie J., Chen K., Huang J., Lee S., Wang J., Gao J., Li X., Chen X. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials. 2010;31:3016–3022. doi: 10.1016/j.biomaterials.2010.01.010. PubMed DOI PMC

Kievit F.M., Zhang M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc. Chem. Res. 2011;44:853–862. doi: 10.1021/ar2000277. PubMed DOI PMC

Huff T.B., Tong L., Zhao Y., Hansen M.N., Cheng J.X., Wei A. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine. 2007;2:125–132. doi: 10.2217/17435889.2.1.125. PubMed DOI PMC

Wagner D.S., Delk N.A., Lukianova-Hleb E.Y., Hafner J.H., Farach-Carson M.C., Lapotko D.O. The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts. Biomaterials. 2010;31:7567–7574. doi: 10.1016/j.biomaterials.2010.06.031. PubMed DOI PMC

Bardhan R., Lal S., Joshi A., Halas N.J. Theranostic nanoshells: From probe design to imaging and treatment of cancer. Acc. Chem. Res. 2011;44:936–946. doi: 10.1021/ar200023x. PubMed DOI PMC

Lim J., Majetich S.A. Composite magnetic–plasmonic nanoparticles for biomedicine: Manipulation and imaging. Nano Today. 2013;8:98–113. doi: 10.1016/j.nantod.2012.12.010. DOI

Huang C., Jiang J., Muangphat C., Sun X., Hao Y. Trapping iron oxide into hollow gold nanoparticles. Nanoscale Res. Lett. 2011;6 doi: 10.1186/1556-276X-6-165. PubMed DOI PMC

Wagstaff A.J., Brown S.D., Holden M.R., Craig G.E., Plumb J.A., Brown R.E., Schreiter N., Chrzanowski W., Wheate N.J. Cisplatin drug delivery using gold-coated iron oxide nanoparticles for enhanced tumour targeting with external magnetic. Inorg. Chim. Acta. 2012;393:328–333. doi: 10.1016/j.ica.2012.05.012. DOI

Wang L., Luo J., Fan Q., Suzuki M., Suzuki I.S., Engelhard M.H., Lin Y., Kim N., Wang J.Q., Zhong C.J. Monodispersed core−shell Fe3O4@Au nanoparticles. J. Phys. Chem. B. 2005;109:21593–21601. doi: 10.1021/jp0543429. PubMed DOI

Zhang L., Zhu X., Jiao D., Sun Y., Sun H. Efficient purification of His-tagged protein by superparamagnetic Fe3O4/Au–ANTA–Co2+ nanoparticles. Mater. Sci. Eng. C. 2013;33:1989–1992. doi: 10.1016/j.msec.2013.01.011. PubMed DOI

Kumagai M., Sarma T.K., Cabral H., Kaida S., Sekino M., Herlambang N., Osada K., Kano M.R., Nishiyama N., Kataoka K. Enhanced in vivo magnetic resonance imaging of tumors by PEGylated iron-oxide–gold core–shell nanoparticles with prolonged blood circulation properties. Macromol. Rapid Commun. 2010;31:1521–1528. doi: 10.1002/marc.201000341. PubMed DOI

Yang H., Zou L.G., Zhang S., Gong M.F., Zhang D., Qi Y.Y., Zhou S.W., Diao X.W. Feasibility of MR imaging in evaluating breast cancer lymphangiogenesis using Polyethylene glycol-GoldMag nanoparticles. Clin. Radiol. 2013;68:1233–1240. doi: 10.1016/j.crad.2013.06.022. PubMed DOI

Fan Z., Shelton M., Singh A.K., Senapati D., Khan S.A., Ray P.C. Multifunctional plasmonic shell–magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells. ACS Nano. 2012;6:1065–1073. doi: 10.1021/nn2045246. PubMed DOI PMC

Krystofiak E.S., Mattson E.C., Voyles P.M., Hirschmugl C.J., Albrecht R.M., Gajdardziska-Josifovska M., Oliver J.A. Multiple morphologies of gold–magnetite heterostructure nanoparticles are effectively functionalized with protein for cell targeting. Microsc. Microanal. 2013;19:821–834. doi: 10.1017/S1431927613001700. PubMed DOI

Salado J., Insausti M., Lezama L., Gil de Muro I., Moros M., Pelaz B., Grazu V., de la Fuente J.M., Rojo T. Functionalized Fe3O4@Au superparamagnetic nanoparticles: In vitro bioactivity. Nanotechnology. 2012;23 doi: 10.1088/0957-4484/23/31/315102. PubMed DOI

Hoskins C., Min Y., Gueorguieva M., McDougall C., Volovick A., Prentice P., Wang Z., Melzer A., Cuschieri A., Wang L. Hybrid gold-iron oxide nanoparticles as a multifunctional platform for biomedical application. J. Nanobiotech. 2012;10 doi: 10.1186/1477-3155-10-27. PubMed DOI PMC

Xu C., Wang B., Sun S. Dumbbell-like Au−Fe3O4 nanoparticles for target-specific platin delivery. J. Am. Chem. Soc. 2009;131:4216–4217. doi: 10.1021/ja900790v. PubMed DOI PMC

Maity D., Zoppellaro G., Sedenkova V., Tucek J., Safarova K., Polakova K., Tomankova K., Diwoky C., Stollberger R., Machala L., et al. Surface design of core–shell superparamagnetic iron oxide nanoparticles drives record relaxivity values in functional MRI contrast agents. Chem. Commun. 2012;48:11398–11400. doi: 10.1039/c2cc35515a. PubMed DOI

Wang J., Wang X., Song Y., Wang J., Zhang C., Chang C., Yan J., Qiu L., Wu M., Guo Z. A platinum anticancer theranostic agent with magnetic targeting potential derived from maghemite nanoparticles. Chem. Sci. 2013;4:2605–2612. doi: 10.1039/c3sc50554e. DOI

Lo C.K., Xiao D., Choi M.M.F. Homocysteine-protected gold-coated magnetic nanoparticles: Synthesis and characterisation. J. Mater. Chem. 2007;17:2418–2427. doi: 10.1039/b617500g. DOI

Guo S., Miao L., Wang Y., Huang L. Unmodified drug used as a material to construct nanoparticles: Delivery of cisplatin for enhanced anti-cancer therapy. J. Control. Release. 2014;174:137–142. doi: 10.1016/j.jconrel.2013.11.019. PubMed DOI PMC

Reddy A.N., Anjaneyulu K., Basak P., Rao N.M., Manorama S.V. A simple approach to the design and functionalization of Fe3O4–Au nanoparticles for biomedical applications. ChemPlusChem. 2012;77:284–292. doi: 10.1002/cplu.201100032. DOI

Wang L., Luo J., Maye M.M., Fan Q., Rendeng Q., Engelhard M.H., Wang C., Lin Y., Zhong C.J. Iron oxide–gold core–shell nanoparticles and thin film assembly. J. Mater. Chem. 2005;15:1821–1832. doi: 10.1039/b501375e. DOI

Pérez-Mirabet L., Surinyach S., Ros J., Suades J., Yáñez R. Gold and silver nanoparticles surface functionalized with rhenium carbonyl complexes. Mater. Chem. Phys. 2012;137:439–447. doi: 10.1016/j.matchemphys.2012.08.068. DOI

Yu Y., Cao C.Y., Chen Z., Liu H., Li P., Dou Z.F., Song W.G. Au nanoparticles embedded into the inner wall of TiO2 hollow spheres as a nanoreactor with superb thermal stability. Chem. Commun. 2013;49:3116–3118. doi: 10.1039/c3cc39212k. PubMed DOI

Szytula A., Fus D., Penc B., Jezierski A. Electronic structure of RTX (R = Pr, Nd; T = Cu, Ag, Au; X = Ge, Sn) compounds. J. Alloy. Compd. 2001;317:340–346. doi: 10.1016/S0925-8388(00)01427-4. DOI

Anand N., Ramudu P., Reddy K.H.R., Seetha K., Rao R., Jagadeesh B., Babu V.S.P., Burri D.R. Gold nanoparticles immobilized on lipoic acid functionalized SBA-15: Synthesis, characterization and catalytic applications. Appl. Catal. A. 2013;454:119–126. doi: 10.1016/j.apcata.2013.01.006. DOI

Roux S., Garcia B., Bridot J.L., Salome M., Marquette C., Lemelle L., Gillet P., Blum L., Perriat P., Tillement O. Synthesis, characterization of dihydrolipoic acid capped gold nanoparticles, and functionalization by the electroluminescent luminol. Langmuir. 2005;21:2526–2536. doi: 10.1021/la048082i. PubMed DOI

Guven A., Rusakova I.A., Lewis M.T., Wilson L.J. Cisplatin@US-tube carbon nanocapsules for enhanced chemotherapeutic delivery. Biomaterials. 2012;33:1455–1461. doi: 10.1016/j.biomaterials.2011.10.060. PubMed DOI PMC

Bach L.G., Islam R., Vo T.S., Kim S.K., Lim K.T. Poly(allyl methacrylate) functionalized hydroxyapatite nanocrystals via the combination of surface-initiated RAFT polymerization and thiol–ene protocol: A potential anticancer drug nanocarrier. J. Colloid Interface Sci. 2013;394:132–140. doi: 10.1016/j.jcis.2012.11.068. PubMed DOI

Ye X., Lin D., Jiao Z., Zhang L. The thermal stability of nanocrystalline maghemite Fe2O3. J. Phys. D: Appl. Phys. 1998;31 doi: 10.1088/0022-3727/31/20/006. DOI

Corr S.J., Raoof M., Mackeyev Y., Phounsavath S., Cheney M.A., Cisneros B.T., Shur M., Gozin M., McNally P.J., Wilson L.J., et al. Citrate-capped gold nanoparticle electrophoretic heat production in response to a time-varying radiofrequency electric-field. J. Phys. Chem. C. 2012;116:24380–24389. doi: 10.1021/jp309053z. PubMed DOI PMC

Dorniani D., Bin Hussein M.Z., Kura A.U., Fakurazi S., Shaari A.H., Shaari Z. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery. Int. J. Nanomed. 2012;7:5745–5756. doi: 10.2147/IJN.S35746. PubMed DOI PMC

Ikuta N., Tanaka A., Otsubo A., Ogawa N., Yamamoto H., Mizukami T., Arai S., Okuno M., Terao K., Matsugo S. Spectroscopic studies of R(+)-α-lipoic acid–cyclodextrin complexes. Int. J. Mol. Sci. 2014;15:20469–20485. doi: 10.3390/ijms151120469. PubMed DOI PMC

Young A.G., Green D.P., McQuillan A.J. IR spectroscopic studies of adsorption of dithiol-containing ligands on CdS Nanocrystal films in aqueous solutions. Langmuir. 2007;23:12923–12931. doi: 10.1021/la702165u. PubMed DOI

Tucek J., Zboril R., Petridis D. Maghemite nanoparticles by view of Mössbauer spectroscopy. J. Nanosci. Nanotechnol. 2006;6:926–947. doi: 10.1166/jnn.2006.183. PubMed DOI

Klencsar Z., Kuzmann E., Vertes A. User-friendly software for Mössbauer spectrum analysis. J. Radioanal. Nucl. Chem. 1996;210:105–118. doi: 10.1007/BF02055410. DOI

Prochazka R., Tucek P., Tucek J., Marek J., Mashlan M., Pechousek J. Statistical analysis and digital processing of the Mössbauer spectra. Meas. Sci. Technol. 2010;21 doi: 10.1088/0957-0233/21/2/025107. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...