Transcriptional profiling of Bordetella pertussis reveals requirement of RNA chaperone Hfq for Type III secretion system functionality

. 2015 ; 12 (2) : 175-85.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25674816

Bordetella pertussis, the causative agent of human whooping cough (pertussis) produces a complex array of virulence factors in order to establish efficient infection in the host. The RNA chaperone Hfq and small regulatory RNAs are key players in posttranscriptional regulation in bacteria and have been shown to play an essential role in virulence of a broad spectrum of bacterial pathogens. This study represents the first attempt to characterize the Hfq regulon of the human pathogen B. pertussis under laboratory conditions as well as upon passage in the host and indicates that loss of Hfq has a profound effect on gene expression in B. pertussis. Comparative transcriptional profiling revealed that Hfq is required for expression of several virulence factors in B. pertussis cells including the Type III secretion system (T3SS). In striking contrast to the wt strain, T3SS did not become operational in the hfq mutant passaged either through mice or macrophages thereby proving that Hfq is required for the functionality of the B. pertussis T3SS. Likewise, expression of virulence factors vag8 and tcfA encoding autotransporter and tracheal colonization factor, respectively, was strongly reduced in the hfq mutant. Importantly, for the first time we demonstrate that B. pertussis T3SS can be activated upon contact with macrophage cells in vitro.

Zobrazit více v PubMed

Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 2005; 18:326-82; PMID:15831828; http://dx.doi.org/10.1128/CMR.18.2.326-382.2005 PubMed DOI PMC

Crowcroft NS, Stein C, Duclos P, Birmingham M. How best to estimate the global burden of pertussis? Lancet Infect Dis 2003; 3:413-8; PMID:12837346; http://dx.doi.org/10.1016/S1473-3099(03)00669-8 PubMed DOI

Cherry JD. The present and future control of pertussis. Clin Infect Dis 2010; 51:663-7; PMID:20704492; http://dx.doi.org/10.1086/655826 PubMed DOI

Raguckas SE, VandenBussche HL, Jacobs C, Klepser ME. Pertussis resurgence: diagnosis, treatment, prevention, and beyond. Pharmacotherapy 2007; 27:41-52; PMID:17192161; http://dx.doi.org/10.1592/phco.27.1.41 PubMed DOI

de Melker HE, Schellekens JF, Neppelenbroek SE, Mooi FR, Rumke HC, Conyn-van Spaendonck MA. Reemergence of pertussis in the highly vaccinated population of the Netherlands: observations on surveillance data. Emerg Infect Dis 2000; 6:348-57; PMID:10905967; http://dx.doi.org/10.3201/eid0604.000404 PubMed DOI PMC

Bart MJ, van Gent M, van der Heide HG, Boekhorst J, Hermans P, Parkhill J, Mooi FR. Comparative genomics of prevaccination and modern Bordetella pertussis strains. BMC Genomics 2010; 11:627; PMID:21070624; http://dx.doi.org/10.1186/1471-2164-11-627 PubMed DOI PMC

Mooi FR, Van Der Maas NA, De Melker HE. Pertussis resurgence: waning immunity and pathogen adaptation – two sides of the same coin. Epidemiol Infect 2014; 142:685-94; PMID:23406868; http://dx.doi.org/10.1017/S0950268813000071 PubMed DOI PMC

Bouchez V, Brun D, Cantinelli T, Dore G, Njamkepo E, Guiso N. First report and detailed characterization of B. pertussis isolates not expressing Pertussis Toxin or Pertactin. Vaccine 2009; 27:6034-41; PMID:19666155; http://dx.doi.org/10.1016/j.vaccine.2009.07.074 PubMed DOI

Octavia S, Maharjan RP, Sintchenko V, Stevenson G, Reeves PR, Gilbert GL, Lan R. Insight into evolution of Bordetella pertussis from comparative genomic analysis: evidence of vaccine-driven selection. Mol Biol Evolut 2011; 28:707-15; PMID:20833694; http://dx.doi.org/10.1093/molbev/msq245 PubMed DOI

Hewlett EL, Burns DL, Cotter PA, Harvill ET, Merkel TJ, Quinn CP, Stibitz ES. Pertussis pathogenesis–what we know and what we don't know. J Infect Dis 2014; 209:982-5; PMID:24626533; http://dx.doi.org/10.1093/infdis/jit639 PubMed DOI PMC

Robbins JB, Schneerson R, Kubler-Kielb J, Keith JM, Trollfors B, Vinogradov E, Shiloach J. Toward a new vaccine for pertussis. Proc Natl Acad Sci U S A 2014; 111:3213-6; PMID:24556987; http://dx.doi.org/10.1073/pnas.1324149111 PubMed DOI PMC

Locht C. Molecular aspects of Bordetella pertussis pathogenesis. Int Microbiol 1999; 2:137-44; PMID:10943406 PubMed

Yuk MH, Harvill ET, Miller JF. The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol Microbiol 1998; 28:945-59; PMID:9663681; http://dx.doi.org/10.1046/j.1365-2958.1998.00850.x PubMed DOI

Fauconnier A, Veithen A, Gueirard P, Antoine R, Wacheul L, Locht C, Bollen A, Godfroid E. Characterization of the type III secretion locus of Bordetella pertussis. Int J Med Microbiol 2001; 290:693-705; PMID:11310448; http://dx.doi.org/10.1016/S1438-4221(01)80009-6 PubMed DOI

Galan JE, Wolf-Watz H. Protein delivery into eukaryotic cells by type III secretion machines. Nature 2006; 444:567-73; PMID:17136086; http://dx.doi.org/10.1038/nature05272 PubMed DOI

Cornelis GR. The type III secretion injectisome. Nat Rev Microbiol 2006; 4:811-25; PMID:17041629; http://dx.doi.org/10.1038/nrmicro1526 PubMed DOI

Skinner JA, Pilione MR, Shen H, Harvill ET, Yuk MH. Bordetella type III secretion modulates dendritic cell migration resulting in immunosuppression and bacterial persistence. J Immunol 2005; 175:4647-52; PMID:16177111; http://dx.doi.org/10.4049/jimmunol.175.7.4647 PubMed DOI

Yuk MH, Harvill ET, Cotter PA, Miller JF. Modulation of host immune responses, induction of apoptosis and inhibition of NF-kappaB activation by the Bordetella type III secretion system. Mol Microbiol 2000; 35:991-1004; PMID:10712682; http://dx.doi.org/10.1046/j.1365-2958.2000.01785.x PubMed DOI

Hot D, Antoine R, Renauld-Mongenie G, Caro V, Hennuy B, Levillain E, Huot L, Wittmann G, Poncet D, Jacob-Dubuisson F, et al. . Differential modulation of Bordetella pertussis virulence genes as evidenced by DNA microarray analysis. Mol Genet Genomics 2003; 269:475-86; PMID:12768411; http://dx.doi.org/10.1007/s00438-003-0851-1 PubMed DOI

Mattoo S, Yuk MH, Huang LL, Miller JF. Regulation of type III secretion in Bordetella. Mol Microbiol 2004; 52:1201-14; PMID:15130135; http://dx.doi.org/10.1111/j.1365-2958.2004.04053.x PubMed DOI

Fennelly NK, Sisti F, Higgins SC, Ross PJ, van der Heide H, Mooi FR, Boyd A, Mills KH. Bordetella pertussis expresses a functional type III secretion system that subverts protective innate and adaptive immune responses. Infect Immun 2008; 76:1257-66; PMID:18195025; http://dx.doi.org/10.1128/IAI.00836-07 PubMed DOI PMC

Gaillard ME, Bottero D, Castuma CE, Basile LA, Hozbor D. Laboratory adaptation of Bordetella pertussis is associated with the loss of type three secretion system functionality. Infect Immun 2011; 79:3677-82; PMID:21730086; http://dx.doi.org/10.1128/IAI.00136-11 PubMed DOI PMC

Cotter PA, Jones AM. Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol 2003; 11:367-73; PMID:12915094; http://dx.doi.org/10.1016/S0966-842X(03)00156-2 PubMed DOI

Uhl MA, Miller JF. BvgAS is sufficient for activation of the Bordetella pertussis ptx locus in Escherichia coli. J Bacteriol 1995; 177:6477-85; PMID:7592423 PubMed PMC

Uhl MA, Miller JF. Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay. EMBO J 1996; 15:1028-36; PMID:8605872 PubMed PMC

Chao Y, Vogel J. The role of Hfq in bacterial pathogens. Curr Opin Microbiol 2010; 13:24-33; PMID:20080057; http://dx.doi.org/10.1016/j.mib.2010.01.001 PubMed DOI

Papenfort K, Vogel J. Regulatory RNA in bacterial pathogens. Cell Host Microbe 2010; 8:116-27; PMID:20638647; http://dx.doi.org/10.1016/j.chom.2010.06.008 PubMed DOI

Hot D, Slupek S, Wulbrecht B, D'Hondt A, Hubans C, Antoine R, Locht C, Lemoine Y. Detection of small RNAs in Bordetella pertussis and identification of a novel repeated genetic element. BMC Genomics 2011; 12:207; PMID:21524285; http://dx.doi.org/10.1186/1471-2164-12-207 PubMed DOI PMC

Bibova I, Skopova K, Masin J, Cerny O, Hot D, Sebo P, Vecerek B. The RNA chaperone Hfq is required for virulence of Bordetella pertussis. Infect Immun 2013; 81:4081-90; PMID:23980112; http://dx.doi.org/10.1128/IAI.00345-13 PubMed DOI PMC

Higgs R, Higgins SC, Ross PJ, Mills KH. Immunity to the respiratory pathogen Bordetella pertussis. Mucosal Immunol 2012; 5:485-500; PMID:22718262 PubMed

Lamberti YA, Hayes JA, Perez Vidakovics ML, Harvill ET, Rodriguez ME. Intracellular trafficking of Bordetella pertussis in human macrophages. Infect Immun 2010; 78:907-13; PMID:20065021; http://dx.doi.org/10.1128/IAI.01031-09 PubMed DOI PMC

Schiano CA, Bellows LE, Lathem WW. The small RNA chaperone Hfq is required for the virulence of Yersinia pseudotuberculosis. Infect Immun 2010; 78:2034-44; PMID:20231416; http://dx.doi.org/10.1128/IAI.01046-09 PubMed DOI PMC

Sittka A, Pfeiffer V, Tedin K, Vogel J. The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol Microbiol 2007; 63:193-217; PMID:17163975; http://dx.doi.org/10.1111/j.1365-2958.2006.05489.x PubMed DOI PMC

Shakhnovich EA, Davis BM, Waldor MK. Hfq negatively regulates type III secretion in EHEC and several other pathogens. Mol Microbiol 2009; 74:347-63; PMID:19703108; http://dx.doi.org/10.1111/j.1365-2958.2009.06856.x PubMed DOI PMC

Zeng Q, McNally RR, Sundin GW. Global small RNA chaperone Hfq and regulatory small RNAs are important virulence regulators in Erwinia amylovora. J Bacteriol 2013; 195:1706-17; PMID:23378513; http://dx.doi.org/10.1128/JB.02056-12 PubMed DOI PMC

Cornelis G, Sluiters C, de Rouvroit CL, Michiels T. Homology between virF, the transcriptional activator of the Yersinia virulence regulon, and AraC, the Escherichia coli arabinose operon regulator. J Bacteriol 1989; 171:254-62; PMID:2644192 PubMed PMC

Brickman TJ, Cummings CA, Liew SY, Relman DA, Armstrong SK. Transcriptional profiling of the iron starvation response in Bordetella pertussis provides new insights into siderophore utilization and virulence gene expression. J Bacteriol 2011; 193:4798-812; PMID:21742863; http://dx.doi.org/10.1128/JB.05136-11 PubMed DOI PMC

Villarino Romero R, Bibova I, Cerny O, Vecerek B, Wald T, Benada O, Zavadilova J, Osicka R, Sebo P. The Bordetella pertussis type III secretion system tip complex protein Bsp22 is not a protective antigen and fails to elicit serum antibody responses during infection of humans and mice. Infect Immun 2013; 81:2761-7; PMID:23690400; http://dx.doi.org/10.1128/IAI.00353-13 PubMed DOI PMC

Schiano CA, Koo JT, Schipma MJ, Caulfield AJ, Jafari N, Lathem WW. Genome-wide analysis of small RNAs expressed by Yersinia pestis identifies a regulator of the Yop-Ysc type III secretion system. J Bacteriol 2014; 196(9):1659-70; PMID:24532772 PubMed PMC

Casadesus J, Low D. Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev 2006; 70:830-56; PMID:16959970; http://dx.doi.org/10.1128/MMBR.00016-06 PubMed DOI PMC

Pilione MR, Harvill ET. The Bordetella bronchiseptica type III secretion system inhibits gamma interferon production that is required for efficient antibody-mediated bacterial clearance. Infect Immun 2006; 74:1043-9; PMID:16428751; http://dx.doi.org/10.1128/IAI.74.2.1043-1049.2006 PubMed DOI PMC

Marr N, Shah NR, Lee R, Kim EJ, Fernandez RC. Bordetella pertussis autotransporter vag8 binds human C1 esterase inhibitor and confers serum resistance. Plos One 2011; 6:e20585; PMID:21695123 PubMed PMC

Gao M, Barnett MJ, Long SR, Teplitski M. Role of the Sinorhizobium meliloti global regulator Hfq in gene regulation and symbiosis. Mol Plant Microbe Interact 2010; 23:355-65; PMID:20192823; http://dx.doi.org/10.1094/MPMI-23-4-0355 PubMed DOI PMC

Torres-Quesada O, Oruezabal RI, Peregrina A, Jofre E, Lloret J, Rivilla R, Toro N, Jimenez-Zurdo JI. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa. BMC Microbiol 2010; 10:71; PMID:20205931; http://dx.doi.org/10.1186/1471-2180-10-71 PubMed DOI PMC

Dietrich M, Munke R, Gottschald M, Ziska E, Boettcher JP, Mollenkopf H, Friedrich A. The effect of hfq on global gene expression and virulence in Neisseria gonorrhoeae. FEBS J 2009; 276:5507-20; PMID:19691497; http://dx.doi.org/10.1111/j.1742-4658.2009.07234.x PubMed DOI

Wilms I, Moller P, Stock AM, Gurski R, Lai EM, Narberhaus F. Hfq influences multiple transport systems and virulence in the plant pathogen Agrobacterium tumefaciens. J Bacteriol 2012; 194:5209-17; PMID:22821981; http://dx.doi.org/10.1128/JB.00510-12 PubMed DOI PMC

Kulesus RR, Diaz-Perez K, Slechta ES, Eto DS, Mulvey MA. Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic Escherichia coli. Infect Immun 2008; 76:3019-26; PMID:18458066; http://dx.doi.org/10.1128/IAI.00022-08 PubMed DOI PMC

Figueroa-Bossi N, Lemire S, Maloriol D, Balbontin R, Casadesus J, Bossi L. Loss of Hfq activates the sigmaE-dependent envelope stress response in Salmonella enterica. Mol Microbiol 2006; 62:838-52; PMID:16999834; http://dx.doi.org/10.1111/j.1365-2958.2006.05413.x PubMed DOI

Stainer DW, Scholte MJ. A simple chemically defined medium for the production of phase I Bordetella pertussis. J Gen Microbiol 1970; 63:211-20; PMID:4324651; http://dx.doi.org/10.1099/00221287-63-2-211 PubMed DOI

Rouillard JM, Zuker M, Gulari E. OligoArray 2.0: design of oligonucleotide probes for DNA microarrays using a thermodynamic approach. Nucleic Acids Res 2003; 31:3057-62; PMID:12799432; http://dx.doi.org/10.1093/nar/gkg426 PubMed DOI PMC

Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 2002; 30:e15; PMID:11842121; http://dx.doi.org/10.1093/nar/30.4.e15 PubMed DOI PMC

Smyth GK, Yang YH, Speed T. Statistical issues in cDNA microarray data analysis. Methods Mol Biol 2003; 224:111-36; PMID:12710670 PubMed

Lonnstedt I, Britton T. Hierarchical Bayes models for cDNA microarray gene expression. Biostatistics 2005; 6:279-91; PMID:15772106; http://dx.doi.org/10.1093/biostatistics/kxi009 PubMed DOI

Park J, Zhang Y, Buboltz AM, Zhang X, Schuster SC, Ahuja U, Liu M, Miller JF, Sebaihia M, Bentley SD, et al. . Comparative genomics of the classical Bordetella subspecies: the evolution and exchange of virulence-associated diversity amongst closely related pathogens. BMC Genomics 2012; 13:545; PMID:23051057; http://dx.doi.org/10.1186/1471-2164-13-545 PubMed DOI PMC

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B 1995; 57:289-300

Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, et al. . TM4: a free, open-source system for microarray data management and analysis. Biotechniques 2003; 34:374-8; PMID:12613259 PubMed

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29:e45; PMID:11328886; http://dx.doi.org/10.1093/nar/29.9.e45 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

An IS element-driven antisense RNA attenuates the expression of serotype 2 fimbriae and the cytotoxicity of Bordetella pertussis

. 2025 Dec ; 14 (1) : 2451718. [epub] 20250127

T3SS chaperone of the CesT family is required for secretion of the anti-sigma factor BtrA in Bordetella pertussis

. 2023 Dec ; 12 (2) : 2272638. [epub] 20231101

Avirulent phenotype promotes Bordetella pertussis adaptation to the intramacrophage environment

. 2023 Dec ; 12 (1) : e2146536.

Omics Analysis of Blood-Responsive Regulon in Bordetella pertussis Identifies a Novel Essential T3SS Substrate

. 2021 Jan 13 ; 22 (2) : . [epub] 20210113

Bordetella Type III Secretion Injectosome and Effector Proteins

. 2020 ; 10 () : 466. [epub] 20200904

Transcriptional profiling of human macrophages during infection with Bordetella pertussis

. 2020 May ; 17 (5) : 731-742. [epub] 20200219

Comparative Integrated Omics Analysis of the Hfq Regulon in Bordetella pertussis

. 2019 Jun 24 ; 20 (12) : . [epub] 20190624

Signal transduction-dependent small regulatory RNA is involved in glutamate metabolism of the human pathogen Bordetella pertussis

. 2018 Nov ; 24 (11) : 1530-1541. [epub] 20180810

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...