Insights into severe 5,10-methylenetetrahydrofolate reductase deficiency: molecular genetic and enzymatic characterization of 76 patients
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25736335
DOI
10.1002/humu.22779
Knihovny.cz E-zdroje
- Klíčová slova
- MTHFR, enzyme kinetics, homocystinuria, methylenetetrahydrofolate,
- MeSH
- aktivace enzymů MeSH
- alely MeSH
- alternativní sestřih MeSH
- exony MeSH
- fibroblasty metabolismus MeSH
- genetické asociační studie * MeSH
- homocystinurie diagnóza genetika metabolismus MeSH
- introny MeSH
- jednonukleotidový polymorfismus MeSH
- kinetika MeSH
- lidé MeSH
- methylentetrahydrofolátreduktasa (NADPH2) nedostatek genetika metabolismus MeSH
- mutace MeSH
- psychotické poruchy diagnóza genetika metabolismus MeSH
- stabilita proteinů MeSH
- svalová spasticita diagnóza genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- methylentetrahydrofolátreduktasa (NADPH2) MeSH
5,10-Methylenetetrahydrofolate reductase (MTHFR) deficiency is the most common inherited disorder of folate metabolism and causes severe hyperhomocysteinaemia. To better understand the relationship between mutation and function, we performed molecular genetic analysis of 76 MTHFR deficient patients, followed by extensive enzymatic characterization of fibroblasts from 72 of these. A deleterious mutation was detected on each of the 152 patient alleles, with one allele harboring two mutations. Sixty five different mutations (42 novel) were detected, including a common splicing mutation (c.1542G>A) found in 21 alleles. Using an enzyme assay in the physiological direction, we found residual activity (1.7%-42% of control) in 42 cell lines, of which 28 showed reduced affinity for nicotinamide adenine dinucleotide phosphate (NADPH), one reduced affinity for methylenetetrahydrofolate, five flavin adenine dinucleotide-responsiveness, and 24 abnormal kinetics of S-adenosylmethionine inhibition. Missense mutations causing virtually absent activity were found exclusively in the N-terminal catalytic domain, whereas missense mutations in the C-terminal regulatory domain caused decreased NADPH binding and disturbed inhibition by S-adenosylmethionine. Characterization of patients in this way provides a basis for improved diagnosis using expanded enzymatic criteria, increases understanding of the molecular basis of MTHFR dysfunction, and points to the possible role of cofactor or substrate in the treatment of patients with specific mutations.
Department of Pediatrics University Hospital Münster D 48149 Germany
Klinikum für Kinder und Jugendmedizin Klinikum Braunschweig Braunschweig D 38118 Germany
Zurich Center for Integrative Human Physiology University of Zurich Switzerland
Citace poskytuje Crossref.org
Shifting landscapes of human MTHFR missense-variant effects