• This record comes from PubMed

Direct effects of (-)-epicatechin and procyanidin B2 on the respiration of rat heart mitochondria

. 2015 ; 2015 () : 232836. [epub] 20150224

Language English Country United States Media print-electronic

Document type Journal Article

Flavonol (-)-epicatechin and its derived dimer procyanidin B2, present in high amounts in cocoa products, have been shown to exert beneficial effects on the heart and cardiovascular system; however, their mechanism of action has not been fully elucidated. We studied effects of (-)-epicatechin and procyanidin B2 on the oxidative phosphorylation of isolated rat heart mitochondria. (-)-Epicatechin and procyanidin B2 had stimulating effect (up to 30% compared to control) on substrate-driven (State 2) mitochondrial respiration. Their effect was dependent on the respiratory substrates used. (-)-Epicatechin at higher concentrations (from 0.27 µg/mL) significantly decreased (up to 15%) substrate- and ADP-driven (State 3) mitochondrial respiration in case of pyruvate and malate oxidation only. Procyanidin B2 (0.7-17.9 ng/mL) inhibited State 3 respiration rate up to 19%, the most profound effect being expressed with succinate as the substrate. (-)-Epicatechin at concentrations of 0.23 µg/mL and 0.46 µg/mL prevented loss of the cytochrome c from mitochondria when substrate was succinate, supporting the evidence of membrane stabilizing properties of this flavonol. Thus, both (-)-epicatechin and procyanidin B2 directly influenced mitochondrial functions and the observed effects could help to explain cardiometabolic risk reduction ascribed to the consumption of modest amounts of cocoa products.

See more in PubMed

Prince P. S. M. (−) Epicatechin prevents alterations in lysosomal glycohydrolases, cathepsins and reduces myocardial infarct size in isoproterenol-induced myocardial infarcted rats. European Journal of Pharmacology. 2013;706(1–3):63–69. doi: 10.1016/j.ejphar.2013.02.003. PubMed DOI

Galleano M., Bernatova I., Puzserova A., et al. (–)-Epicatechin reduces blood pressure and improves vasorelaxation in spontaneously hypertensive rats by NO-mediated mechanism. IUBMB Life. 2013;65(8):710–715. doi: 10.1002/iub.1185. PubMed DOI

Schroeter H., Heiss C., Balzer J., et al. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(4):1024–1029. doi: 10.1073/pnas.0510168103. PubMed DOI PMC

Fraga C. G., Oteiza P. I. Dietary flavonoids: role of (-)-epicatechin and related procyanidins in cell signaling. Free Radical Biology and Medicine. 2011;51(4):813–823. doi: 10.1016/j.freeradbiomed.2011.06.002. PubMed DOI

Ruijters E. J. B., Weseler A. R., Kicken C., Haenen G. R. M. M., Bast A. The flavanol (-)-epicatechin and its metabolites protect against oxidative stress in primary endothelial cells via a direct antioxidant effect. European Journal of Pharmacology. 2013;715(1–3):147–153. doi: 10.1016/j.ejphar.2013.05.029. PubMed DOI

Avelar M. M., Gouvêa C. M. C. P. Procyanidin B2 cytotoxicity to MCF-7 human breast adenocarcinoma cells. Indian Journal of Pharmaceutical Sciences. 2012;74(4):351–355. doi: 10.4103/0250-474x.107070. PubMed DOI PMC

Zhang W.-Y., Liu H.-Q., Xie K.-Q., et al. Procyanidin dimer B2 [epicatechin-(4β-8)-epicatechin] suppresses the expression of cyclooxygenase-2 in endotoxin-treated monocytic cells. Biochemical and Biophysical Research Communications. 2006;345(1):508–515. doi: 10.1016/j.bbrc.2006.04.085. PubMed DOI

Sakano K., Mizutani M., Murata M., Oikawa S., Hiraku Y., Kawanishi S. Procyanidin B2 has anti- and pro-oxidant effects on metal-mediated DNA damage. Free Radical Biology and Medicine. 2005;39(8):1041–1049. doi: 10.1016/j.freeradbiomed.2005.05.024. PubMed DOI

Ertracht O., Malka A., Atar S., Binah O. The mitochondria as a target for cardioprotection in acute myocardial ischemia. Pharmacology & Therapeutics. 2014;142(1):33–40. doi: 10.1016/j.pharmthera.2013.11.003. PubMed DOI

Kalogeris T., Bao Y., Korthuis R. J. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biology. 2014;2:702–714. doi: 10.1016/j.redox.2014.05.006. PubMed DOI PMC

Tullio F., Angotti C., Perrelli M.-G., Penna C., Pagliaro P. Redox balance and cardioprotection. Basic Research in Cardiology. 2013;108(6, article 392) doi: 10.1007/s00395-013-0392-7. PubMed DOI

Holtzman J. L. Calibration of the oxygen polarograph by the depletion of oxygen with hypoxanthine-xanthine oxidase-catalase. Analytical Chemistry. 1976;48(1):229–230. doi: 10.1021/ac60365a048. PubMed DOI

Tait S. W. G., Green D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Reviews Molecular Cell Biology. 2010;11(9):621–632. doi: 10.1038/nrm2952. PubMed DOI

Stanely Mainzen Prince P. Preventive effects of (-) epicatechin on altered adenosine triphosphatases and minerals in isoproterenol-induced myocardial infarcted rats. Journal of Biochemical and Molecular Toxicology. 2012;26(12):516–521. doi: 10.1002/jbt.21461. PubMed DOI

Leonardo C. C., Agrawal M., Singh N., Moore J. R., Biswal S., Doré S. Oral administration of the flavanol (-)-epicatechin bolsters endogenous protection against focal ischemia through the Nrf2 cytoprotective pathway. European Journal of Neuroscience. 2013;38(11):3659–3668. doi: 10.1111/ejn.12362. PubMed DOI PMC

Heo H. J., Lee C. Y. Epicatechin and catechin in cocoa inhibit amyloid beta protein induced apoptosis. Journal of Agricultural and Food Chemistry. 2005;53(5):1445–1448. doi: 10.1021/jf048989m. PubMed DOI

Quiñonez-Bastidas G. N., Cervantes-Durán C., Rocha-González H. I., Murbartián J., Granados-Soto V. Analysis of the mechanisms underlying the antinociceptive effect of epicatechin in diabetic rats. Life Sciences. 2013;93(17):637–645. doi: 10.1016/j.lfs.2013.08.022. PubMed DOI

Ramirez-Sanchez I., Taub P. R., Ciaraldi T. P., et al. (-)-Epicatechin rich cocoa mediated modulation of oxidative stress regulators in skeletal muscle of heart failure and type 2 diabetes patients. International Journal of Cardiology. 2013;168(4):3982–3990. doi: 10.1016/j.ijcard.2013.06.089. PubMed DOI PMC

Ahmad F., Khalid P., Khan M. M., Rastogi A. K., Kidwai J. R. Insulin like activity in (-) epicatechin. Acta Diabetologica Latina. 1989;26(4):291–300. doi: 10.1007/BF02624640. PubMed DOI

Chang W. T., Shao Z. H., Yin J. J., et al. Comparative effects of flavonoids on oxidant scavenging and ischemia-reperfusion injury in cardiomyocytes. European Journal of Pharmacology. 2007;566(1–3):58–66. doi: 10.1016/j.ejphar.2007.03.037. PubMed DOI PMC

Moreno-Ulloa A., Cid A., Rubio-Gayosso I., Ceballos G., Villarreal F., Ramirez-Sanchez I. Effects of (-)-epicatechin and derivatives on nitric oxide mediated induction of mitochondrial proteins. Bioorganic and Medicinal Chemistry Letters. 2013;23(15):4441–4446. doi: 10.1016/j.bmcl.2013.05.079. PubMed DOI PMC

Buitrago-Lopez A., Sanderson J., Johnson L., et al. Chocolate consumption and cardiometabolic disorders: systematic review and meta-analysis. British Medical Journal. 2011;343 doi: 10.1136/bmj.d4488.d4488 PubMed DOI PMC

Panneerselvam M., Ali S. S., Finley J. C., et al. Epicatechin regulation of mitochondrial structure and function is opioid receptor dependent. Molecular Nutrition and Food Research. 2013;57(6):1007–1014. doi: 10.1002/mnfr.201300026. PubMed DOI PMC

Prince P. S. M. (-) Epicatechin attenuates mitochondrial damage by enhancing mitochondrial multi-marker enzymes, Adenosine triphosphate and lowering calcium in isoproterenol induced myocardial infarcted rats. Food and Chemical Toxicology. 2013;53:409–416. doi: 10.1016/j.fct.2012.12.010. PubMed DOI

Groen A. K., Wanders R. J., Westerhoff H. V., van der Meer R., Tager J. M. Quantification of the contribution of various steps to the control of mitochondrial respiration. The Journal of Biological Chemistry. 1982;257(6):2754–2757. PubMed

Stucki J. W. The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. European Journal of Biochemistry. 1980;109(1):269–283. doi: 10.1111/j.1432-1033.1980.tb04792.x. PubMed DOI

Skulachev V. P. Uncoupling: new approaches to an old problem of bioenergetics. Biochimica et Biophysica Acta. 1998;1363(2):100–124. doi: 10.1016/s0005-2728(97)00091-1. PubMed DOI

Cunha F. M., da Silva C. C. C., Cerqueira F. M., Kowaltowski A. J. Mild mitochondrial uncoupling as a therapeutic strategy. Current Drug Targets. 2011;12(6):783–789. doi: 10.2174/138945011795528778. PubMed DOI

Modrianský M., Gabrielová E. Uncouple my heart: the benefits of inefficiency. Journal of Bioenergetics and Biomembranes. 2009;41(2):133–136. doi: 10.1007/s10863-009-9212-z. PubMed DOI

Hafner R. P., Brown G. C., Brand M. D. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the ‘top-down’ approach of metabolic control theory. European Journal of Biochemistry. 1990;188(2):313–319. doi: 10.1111/j.1432-1033.1990.tb15405.x. PubMed DOI

Brown G. C. Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochemical Journal. 1992;284, part 1:1–13. PubMed PMC

Borutaite V., Mildaziene V., Brown G. C., Brand M. D. Control and kinetic analysis of ischemia-damaged heart mitochondria: which parts of the oxidative phosphorylation system are affected by ischemia? Biochimica et Biophysica Acta—Molecular Basis of Disease. 1995;1272(3):154–158. doi: 10.1016/0925-4439(95)00080-1. PubMed DOI

Minners J., Lacerda L., Yellon D. M., Opie L. H., McLeod C. J., Sack M. N. Diazoxide-induced respiratory inhibition—a putative mitochondrial KATP channel independent mechanism of pharmacological preconditioning. Molecular and Cellular Biochemistry. 2007;294(1-2):11–18. doi: 10.1007/s11010-005-9066-6. PubMed DOI

Brossette T., Hundsdörfer C., Kröncke K.-D., Sies H., Stahl W. Direct evidence that (-)-epicatechin increases nitric oxide levels in human endothelial cells. European Journal of Nutrition. 2011;50(7):595–599. doi: 10.1007/s00394-011-0172-9. PubMed DOI

Ramirez-Sanchez I., Aguilar H., Ceballos G., Villarreal F. (-)-Epicatechin-induced calcium independent eNOS activation: roles of HSP90 and AKT. Molecular and Cellular Biochemistry. 2012;370(1-2):141–150. doi: 10.1007/s11010-012-1405-9. PubMed DOI PMC

Tanabe K., Tamura Y., Lanaspa M. A., et al. Epicatechin limits renal injury by mitochondrial protection in cisplatin nephropathy. The American Journal of Physiology—Renal Physiology. 2012;303(9):F1264–F1274. doi: 10.1152/ajprenal.00227.2012. PubMed DOI PMC

Yamazaki K. G., Romero-Perez D., Barraza-Hidalgo M., et al. Short- and long-term effects of (−)-epicatechin on myocardial ischemia-reperfusion injury. The American Journal of Physiology—Heart and Circulatory Physiology. 2008;295(2):H761–H767. doi: 10.1152/ajpheart.00413.2008. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...