Direct effects of (-)-epicatechin and procyanidin B2 on the respiration of rat heart mitochondria
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
25811024
PubMed Central
PMC4354975
DOI
10.1155/2015/232836
Knihovny.cz E-resources
- MeSH
- Adenosine Diphosphate pharmacology MeSH
- Biflavonoids chemistry pharmacology MeSH
- Cell Respiration drug effects MeSH
- Cytochromes c metabolism MeSH
- Catechin chemistry pharmacology MeSH
- Rats MeSH
- Oxidation-Reduction MeSH
- Proanthocyanidins chemistry pharmacology MeSH
- Mitochondria, Heart drug effects metabolism MeSH
- Substrate Specificity drug effects MeSH
- Succinates metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adenosine Diphosphate MeSH
- Biflavonoids MeSH
- Cytochromes c MeSH
- Catechin MeSH
- Proanthocyanidins MeSH
- procyanidin B2 MeSH Browser
- Succinates MeSH
Flavonol (-)-epicatechin and its derived dimer procyanidin B2, present in high amounts in cocoa products, have been shown to exert beneficial effects on the heart and cardiovascular system; however, their mechanism of action has not been fully elucidated. We studied effects of (-)-epicatechin and procyanidin B2 on the oxidative phosphorylation of isolated rat heart mitochondria. (-)-Epicatechin and procyanidin B2 had stimulating effect (up to 30% compared to control) on substrate-driven (State 2) mitochondrial respiration. Their effect was dependent on the respiratory substrates used. (-)-Epicatechin at higher concentrations (from 0.27 µg/mL) significantly decreased (up to 15%) substrate- and ADP-driven (State 3) mitochondrial respiration in case of pyruvate and malate oxidation only. Procyanidin B2 (0.7-17.9 ng/mL) inhibited State 3 respiration rate up to 19%, the most profound effect being expressed with succinate as the substrate. (-)-Epicatechin at concentrations of 0.23 µg/mL and 0.46 µg/mL prevented loss of the cytochrome c from mitochondria when substrate was succinate, supporting the evidence of membrane stabilizing properties of this flavonol. Thus, both (-)-epicatechin and procyanidin B2 directly influenced mitochondrial functions and the observed effects could help to explain cardiometabolic risk reduction ascribed to the consumption of modest amounts of cocoa products.
See more in PubMed
Prince P. S. M. (−) Epicatechin prevents alterations in lysosomal glycohydrolases, cathepsins and reduces myocardial infarct size in isoproterenol-induced myocardial infarcted rats. European Journal of Pharmacology. 2013;706(1–3):63–69. doi: 10.1016/j.ejphar.2013.02.003. PubMed DOI
Galleano M., Bernatova I., Puzserova A., et al. (–)-Epicatechin reduces blood pressure and improves vasorelaxation in spontaneously hypertensive rats by NO-mediated mechanism. IUBMB Life. 2013;65(8):710–715. doi: 10.1002/iub.1185. PubMed DOI
Schroeter H., Heiss C., Balzer J., et al. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(4):1024–1029. doi: 10.1073/pnas.0510168103. PubMed DOI PMC
Fraga C. G., Oteiza P. I. Dietary flavonoids: role of (-)-epicatechin and related procyanidins in cell signaling. Free Radical Biology and Medicine. 2011;51(4):813–823. doi: 10.1016/j.freeradbiomed.2011.06.002. PubMed DOI
Ruijters E. J. B., Weseler A. R., Kicken C., Haenen G. R. M. M., Bast A. The flavanol (-)-epicatechin and its metabolites protect against oxidative stress in primary endothelial cells via a direct antioxidant effect. European Journal of Pharmacology. 2013;715(1–3):147–153. doi: 10.1016/j.ejphar.2013.05.029. PubMed DOI
Avelar M. M., Gouvêa C. M. C. P. Procyanidin B2 cytotoxicity to MCF-7 human breast adenocarcinoma cells. Indian Journal of Pharmaceutical Sciences. 2012;74(4):351–355. doi: 10.4103/0250-474x.107070. PubMed DOI PMC
Zhang W.-Y., Liu H.-Q., Xie K.-Q., et al. Procyanidin dimer B2 [epicatechin-(4β-8)-epicatechin] suppresses the expression of cyclooxygenase-2 in endotoxin-treated monocytic cells. Biochemical and Biophysical Research Communications. 2006;345(1):508–515. doi: 10.1016/j.bbrc.2006.04.085. PubMed DOI
Sakano K., Mizutani M., Murata M., Oikawa S., Hiraku Y., Kawanishi S. Procyanidin B2 has anti- and pro-oxidant effects on metal-mediated DNA damage. Free Radical Biology and Medicine. 2005;39(8):1041–1049. doi: 10.1016/j.freeradbiomed.2005.05.024. PubMed DOI
Ertracht O., Malka A., Atar S., Binah O. The mitochondria as a target for cardioprotection in acute myocardial ischemia. Pharmacology & Therapeutics. 2014;142(1):33–40. doi: 10.1016/j.pharmthera.2013.11.003. PubMed DOI
Kalogeris T., Bao Y., Korthuis R. J. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biology. 2014;2:702–714. doi: 10.1016/j.redox.2014.05.006. PubMed DOI PMC
Tullio F., Angotti C., Perrelli M.-G., Penna C., Pagliaro P. Redox balance and cardioprotection. Basic Research in Cardiology. 2013;108(6, article 392) doi: 10.1007/s00395-013-0392-7. PubMed DOI
Holtzman J. L. Calibration of the oxygen polarograph by the depletion of oxygen with hypoxanthine-xanthine oxidase-catalase. Analytical Chemistry. 1976;48(1):229–230. doi: 10.1021/ac60365a048. PubMed DOI
Tait S. W. G., Green D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Reviews Molecular Cell Biology. 2010;11(9):621–632. doi: 10.1038/nrm2952. PubMed DOI
Stanely Mainzen Prince P. Preventive effects of (-) epicatechin on altered adenosine triphosphatases and minerals in isoproterenol-induced myocardial infarcted rats. Journal of Biochemical and Molecular Toxicology. 2012;26(12):516–521. doi: 10.1002/jbt.21461. PubMed DOI
Leonardo C. C., Agrawal M., Singh N., Moore J. R., Biswal S., Doré S. Oral administration of the flavanol (-)-epicatechin bolsters endogenous protection against focal ischemia through the Nrf2 cytoprotective pathway. European Journal of Neuroscience. 2013;38(11):3659–3668. doi: 10.1111/ejn.12362. PubMed DOI PMC
Heo H. J., Lee C. Y. Epicatechin and catechin in cocoa inhibit amyloid beta protein induced apoptosis. Journal of Agricultural and Food Chemistry. 2005;53(5):1445–1448. doi: 10.1021/jf048989m. PubMed DOI
Quiñonez-Bastidas G. N., Cervantes-Durán C., Rocha-González H. I., Murbartián J., Granados-Soto V. Analysis of the mechanisms underlying the antinociceptive effect of epicatechin in diabetic rats. Life Sciences. 2013;93(17):637–645. doi: 10.1016/j.lfs.2013.08.022. PubMed DOI
Ramirez-Sanchez I., Taub P. R., Ciaraldi T. P., et al. (-)-Epicatechin rich cocoa mediated modulation of oxidative stress regulators in skeletal muscle of heart failure and type 2 diabetes patients. International Journal of Cardiology. 2013;168(4):3982–3990. doi: 10.1016/j.ijcard.2013.06.089. PubMed DOI PMC
Ahmad F., Khalid P., Khan M. M., Rastogi A. K., Kidwai J. R. Insulin like activity in (-) epicatechin. Acta Diabetologica Latina. 1989;26(4):291–300. doi: 10.1007/BF02624640. PubMed DOI
Chang W. T., Shao Z. H., Yin J. J., et al. Comparative effects of flavonoids on oxidant scavenging and ischemia-reperfusion injury in cardiomyocytes. European Journal of Pharmacology. 2007;566(1–3):58–66. doi: 10.1016/j.ejphar.2007.03.037. PubMed DOI PMC
Moreno-Ulloa A., Cid A., Rubio-Gayosso I., Ceballos G., Villarreal F., Ramirez-Sanchez I. Effects of (-)-epicatechin and derivatives on nitric oxide mediated induction of mitochondrial proteins. Bioorganic and Medicinal Chemistry Letters. 2013;23(15):4441–4446. doi: 10.1016/j.bmcl.2013.05.079. PubMed DOI PMC
Buitrago-Lopez A., Sanderson J., Johnson L., et al. Chocolate consumption and cardiometabolic disorders: systematic review and meta-analysis. British Medical Journal. 2011;343 doi: 10.1136/bmj.d4488.d4488 PubMed DOI PMC
Panneerselvam M., Ali S. S., Finley J. C., et al. Epicatechin regulation of mitochondrial structure and function is opioid receptor dependent. Molecular Nutrition and Food Research. 2013;57(6):1007–1014. doi: 10.1002/mnfr.201300026. PubMed DOI PMC
Prince P. S. M. (-) Epicatechin attenuates mitochondrial damage by enhancing mitochondrial multi-marker enzymes, Adenosine triphosphate and lowering calcium in isoproterenol induced myocardial infarcted rats. Food and Chemical Toxicology. 2013;53:409–416. doi: 10.1016/j.fct.2012.12.010. PubMed DOI
Groen A. K., Wanders R. J., Westerhoff H. V., van der Meer R., Tager J. M. Quantification of the contribution of various steps to the control of mitochondrial respiration. The Journal of Biological Chemistry. 1982;257(6):2754–2757. PubMed
Stucki J. W. The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. European Journal of Biochemistry. 1980;109(1):269–283. doi: 10.1111/j.1432-1033.1980.tb04792.x. PubMed DOI
Skulachev V. P. Uncoupling: new approaches to an old problem of bioenergetics. Biochimica et Biophysica Acta. 1998;1363(2):100–124. doi: 10.1016/s0005-2728(97)00091-1. PubMed DOI
Cunha F. M., da Silva C. C. C., Cerqueira F. M., Kowaltowski A. J. Mild mitochondrial uncoupling as a therapeutic strategy. Current Drug Targets. 2011;12(6):783–789. doi: 10.2174/138945011795528778. PubMed DOI
Modrianský M., Gabrielová E. Uncouple my heart: the benefits of inefficiency. Journal of Bioenergetics and Biomembranes. 2009;41(2):133–136. doi: 10.1007/s10863-009-9212-z. PubMed DOI
Hafner R. P., Brown G. C., Brand M. D. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the ‘top-down’ approach of metabolic control theory. European Journal of Biochemistry. 1990;188(2):313–319. doi: 10.1111/j.1432-1033.1990.tb15405.x. PubMed DOI
Brown G. C. Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochemical Journal. 1992;284, part 1:1–13. PubMed PMC
Borutaite V., Mildaziene V., Brown G. C., Brand M. D. Control and kinetic analysis of ischemia-damaged heart mitochondria: which parts of the oxidative phosphorylation system are affected by ischemia? Biochimica et Biophysica Acta—Molecular Basis of Disease. 1995;1272(3):154–158. doi: 10.1016/0925-4439(95)00080-1. PubMed DOI
Minners J., Lacerda L., Yellon D. M., Opie L. H., McLeod C. J., Sack M. N. Diazoxide-induced respiratory inhibition—a putative mitochondrial KATP channel independent mechanism of pharmacological preconditioning. Molecular and Cellular Biochemistry. 2007;294(1-2):11–18. doi: 10.1007/s11010-005-9066-6. PubMed DOI
Brossette T., Hundsdörfer C., Kröncke K.-D., Sies H., Stahl W. Direct evidence that (-)-epicatechin increases nitric oxide levels in human endothelial cells. European Journal of Nutrition. 2011;50(7):595–599. doi: 10.1007/s00394-011-0172-9. PubMed DOI
Ramirez-Sanchez I., Aguilar H., Ceballos G., Villarreal F. (-)-Epicatechin-induced calcium independent eNOS activation: roles of HSP90 and AKT. Molecular and Cellular Biochemistry. 2012;370(1-2):141–150. doi: 10.1007/s11010-012-1405-9. PubMed DOI PMC
Tanabe K., Tamura Y., Lanaspa M. A., et al. Epicatechin limits renal injury by mitochondrial protection in cisplatin nephropathy. The American Journal of Physiology—Renal Physiology. 2012;303(9):F1264–F1274. doi: 10.1152/ajprenal.00227.2012. PubMed DOI PMC
Yamazaki K. G., Romero-Perez D., Barraza-Hidalgo M., et al. Short- and long-term effects of (−)-epicatechin on myocardial ischemia-reperfusion injury. The American Journal of Physiology—Heart and Circulatory Physiology. 2008;295(2):H761–H767. doi: 10.1152/ajpheart.00413.2008. PubMed DOI PMC