Dynamic properties of small-scale solar wind plasma fluctuations

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25848078

The paper presents the latest results of the studies of small-scale fluctuations in a turbulent flow of solar wind (SW) using measurements with extremely high temporal resolution (up to 0.03 s) of the bright monitor of SW (BMSW) plasma spectrometer operating on astrophysical SPECTR-R spacecraft at distances up to 350,000 km from the Earth. The spectra of SW ion flux fluctuations in the range of scales between 0.03 and 100 s are systematically analysed. The difference of slopes in low- and high-frequency parts of spectra and the frequency of the break point between these two characteristic slopes was analysed for different conditions in the SW. The statistical properties of the SW ion flux fluctuations were thoroughly analysed on scales less than 10 s. A high level of intermittency is demonstrated. The extended self-similarity of SW ion flux turbulent flow is constantly observed. The approximation of non-Gaussian probability distribution function of ion flux fluctuations by the Tsallis statistics shows the non-extensive character of SW fluctuations. Statistical characteristics of ion flux fluctuations are compared with the predictions of a log-Poisson model. The log-Poisson parametrization of the structure function scaling has shown that well-defined filament-like plasma structures are, as a rule, observed in the turbulent SW flows.

Zobrazit více v PubMed

Alexandrova O, Chen CHK, Sorriso-Valvo L, Horbury TS, Bale SD. 2013. Solar wind turbulence and the role of ion instabilities. Space Sci. Rev. 178, 101–139. (10.1007/s11214-013-0004-8) DOI

Bruno R, Carbone V. 2013. The solar wind as a turbulence laboratory. Living Revi. Solar Phys. 10, 2 (10.12942/lrsp-2013-2) DOI

Gary SP. 2015. Short-wavelength plasma turbulence and temperature anisotropy instabilities: recent computational progress. Phil. Trans. R. Soc. A 373, 20140149 (10.1098/rsta.2014.0149) PubMed DOI PMC

Goldstein ML, Wicks RT, Perri S, Sahraoui F. 2015. Kinetic scale turbulence and dissipation in the solar wind: key observational results and future outlook. Phil. Trans. R. Soc. A 373, 20140147 (10.1098/rsta.2014.0147) PubMed DOI PMC

Howes GG. 2015. A dynamical model of plasma turbulence in the solar wind. Phil. Trans. R. Soc. A 373, 20140145 (10.1098/rsta.2014.0145) PubMed DOI PMC

Matthaeus WH, Wan M, Servidio S, Greco A, Osman KT, Oughton S, Dmitruk P. 2015. Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas. Phil. Trans. R. Soc. A 373, 20140154 (10.1098/rsta.2014.0154) PubMed DOI PMC

Oughton S, Matthaeus WH, Wan M, Osman KT. 2015. Anisotropy in solar wind plasma turbulence. Phil. Trans. R. Soc. A 373, 20140152 (10.1098/rsta.2014.0152) PubMed DOI PMC

Milovanov AV, Avanov LA, Zastenker GN, Zelenyi LM. 1996. Multifractal properties of solar wind turbulence: theory and observations. Cosm. Res. 34, 415–421.

Goldstein ML, Roberts DA, Matthaeus WH. 1995. Magnetohydrodynamic turbulence in the solar wind. Annu. Rev. Astron. Astrophys. 33, 283–325. (10.1146/annurev.aa.33.090195.001435) DOI

Marsch E. 1991. MHD turbulence in the solar wind. In Physics of the inner heliosphere II. Particles, waves and turbulence (eds Schwenn R, Marsch E.), pp. 159–241. Berlin, Germany: Springer.

Matthaeus WH, Velli M. 2011. Who need turbulence? A review of turbulence effects in the heliosphere and on the fundamental process of reconnection. Space Sci. Rev. 160, 145–168. (10.1007/s211214-011-9793-9) DOI

Kolmogorov AN. 1941. The local structure of turbulence in incompressible viscous fluid for very large Reynolds' numbers. Doklady Akademii Nauk SSSR. 30, 301–305.

Celnikier LM, Harvey CC, Jegou R, Moricet P, Kemp M. 1983. A determination of the electron density fluctuation spectrum in the solar wind, using the ISEE propagation experiment. Astron. Astrophys. 126, 293–298.

Celnikier LM, Muschietti L, Goldman MV. 1987. Aspects of interplanetary plasma turbulence.Astron. Astroph. 181, 138–154.

Issautier K, Mangeney A, Alexandrova O. 2010. Spectrum of the electron density fluctuations: preliminary results from Ulysses observations. Twelfth Int. Solar Wind Conf. AIP Conf. Proc. 1216, 148–151. (10.1063/1.3395822) DOI

Kellogg PJ, Horbury TS. 2005. Rapid density fluctuations in the solar wind. Ann. Geophys. 23, 3765–3773. (10.5194/angeo-23-3765-2005) DOI

Unti TWJ, Neugebauer M, Goldstein BE. 1973. Direct measurements of solar-wind fluctuations between 0.0048 and 13.3 Hz. Astrophys. J. 180, 591–598. (10.1086/151987) DOI

Borovsky J. 2012. The velocity and magnetic field fluctuations of the solar wind at 1 AU: statistical analysis of Fourier spectra and correlations with plasma properties. J. Geophys. Res. 117, A05104 (10.1029/2011JA017499) DOI

Grappin R, Velli M, Mangeney A. 1991. ‘Alfvenic’ versus ‘standard’ turbulence in the solar wind. Ann. Geophys. 9, 416–426.

Podesta JJ, Roberts DA, Goldstein ML. 2006. Power spectrum of small-scale turbulent velocity fluctuations in the solar wind. J. Geophys. Res. 111, A10109 (10.1029/2006JA011834) DOI

Salem C, Mangeney A, Bale S, Veltri P. 2009. Solar wind magnetohydrodynamics turbulence: anomalous scaling and role of intermittency. Astrophys. J. 702, 537–553. (10.1088/0004-637X/702/1/537) DOI

Chen CHK, Salem CS, Bonnell JW, Mozer FS, Bale SD. 2012. Density fluctuation spectrum on solar wind turbulence between ion and electron scales. Phys. Rev. Lett. 109, 035001 (10.1103/PhysRevLett.109.035001) PubMed DOI

Safrankova J, Nemecek Z, Prech L, Zastenker G. 2013. Ion kinetic scale in the solar wind observed. Phys. Rev. Lett. 110, 025004 (10.1103/PhysRevLett.110.025004) PubMed DOI

Kiyani KH, Chapman SC, Khotyaintsev YuV, Dunplop MW, Sahraoui F. 2009. Global scale-invariant dissipation in collisionless plasma turbulence. Phys. Rev. Let. 103, 075006 (10.1103/PhysRevLett.103.075006) PubMed DOI

Sorriso-Valvo L, Carbone V, Veltri P, Consolini G, Bruno R. 1999. Intermittency in the solar wind turbulence through probability distribution functions of fluctuations. Geophys. Res. Lett. 26, 1801–1804. (10.1029/1999GL900270) DOI

Budaev VP, Savin SP, Zelenyi LM. 2011. Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: towards a quantitative definition of plasma transport features. Phys.-Usp. 54, 875–918. (10.3367/UFNe.0181.201109a.0905) DOI

Chen CHK, Sorriso-Valvo L, Safrankova J, Nemecek Z. 2014. Intermittency of solar wind densite fluctuations from ion to electron scales. Astrophys. J. Lett. 789, L8 (10.1088/2041-8205/789/1/L8) DOI

Bruno R, Bavassano B, Pietrodpaolo E, Carbone V, Veltri P. 1999. Effects of intermittency on interplanetary velocity and magnetic field fluctuations anisotropy. Geophys. Res. Lett. 26, 3185–3188. (10.1029/1999GL010668) DOI

Chen CHK, Mallet A, Yousef TA, Schekochihin AA, Horbury TS. 2011. Anisotropy of Alfvenic turbulence in the solar wind and numerical simulations. Mon. Not. R. Astron. Soc. 415, 3219–3226. (10.1111/j.1365-2966.2011.18933.x) DOI

Horbury TS, Forman M, Oughton S. 2008. Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 101, 175005 (10.1103/PhysRevLett.101.175005) PubMed DOI

Oughton S, Matthaeus WH. 2005. Parallel and perpendicular cascades in solar wind turbulence. Nonlinear Process. Geophys. 12, 299–310. (10.5194/npg-12-299-2005) DOI

Zelenyi LM, Zastenker GN, Petrukovich AA, Chesalin LS, Nazarov VN, Prokhorenko VI, Larionov EI. 2013. Experiment plasma-F on board SPECTR-R. Cosm. Res. 51, 73–77. (10.1134/S0010952513020093) DOI

Safrankova J, Nemecek Z, Prech L, Koval A, Cermak I, Beranek M, Zastenker G, Shevyrev N, Chesalin L. 2008. A new approach to solar wind monitoring. Adv. Space Res. 41, 153–159. (10.1016/j.asr.2007.08.034) DOI

Safrankova J. et al 2013. Fast solar wind monitor (BMSW): description and first results. Space Sci. Rev. 175, 165–182. (10.1007/s11214-013-9979-4) DOI

Zastenker GN. et al 2013. Fast measurements of solar wind parameters by BMSW instrument. Cosm. Res. 51, 78–89. (10.1134/S0010952513020081) DOI

Safrankova J, Nemecek Z, Cagas P, Prech L, Pavlu J, Zastenker GN, Riazantseva MO, Koloskova IV. 2013. Short-scale variations of the solar wind helium abundance. Astrophys. J. 778, 25 (10.1088/0004-637X/778/1/25) DOI

Safrankova J, Nemecek Z, Nemec F, Prech L, Chen CHK, Zastenker G. In press Solar wind density spectra around the ion spectral break. Astrophys. J.

Zastenker GN, Koloskova IV, Riazantseva MO, Yurasov AS, Safrankova J, Nemecek Z, Prech L, Cagas P. 2014. Observation of fast variations of the helium-ion abundance in the solar wind. Cosm. Res. 52, 25–36. (10.1134/S0010952514010109) DOI

Milovanov AV, Zelenyi LM. 1998. Fracton excitations as driving mechanisms for self- organized dynamical structuring in the solar wind. Astrophys. Space Sci. 264, 317–345. (10.1023/A:1002450525201) DOI

Zelenyi LM, Milovanov AV. 2004. Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics. Phys.-Usp. 47, 749–788. (10.1070/PU2004v047n08ABEH001705) DOI

Alexandrova O, Saur J, Lacombe C, Mangeney A, Mitchell J, Schwartz SJ, Robert P. 2009. Universality of solar-wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett. 103, 165003 (10.1103/PhysRevLett.103.165003) PubMed DOI

Chen CHK, Howes GG, Bonnell JW, Mozer FS, Klein KG, Bale SD. 2013. Kinetic scale density fluctuations. AIP Conf. Proc. 1539, 143– 146. (10.1063/1.4811008) DOI

Smith CW, Hamilton K, Vasquez BJ, Leamon RJ. 2006. Dependence of the dissipation range spectrum of interplanetary magnetic fluctuations on the rate of energy cascade. Astrophys. J. 645, 85–88. (10.1086/506151) DOI

Chen CHK, Boldyrev S, Xia Q, Perez JC. 2013. Nature of subproton scale turbulence in the solar wind. Phys. Rev. Lett. 110, 225002 (10.1103/PhysRevLett.110.225002) PubMed DOI

Galtier S, Pouquet A, Mangeney A. 2005. On spectral scaling laws for incompressible anisotropic magnetohydrodynamic turbulence. Phys. Plasmas. 12, 092310 (10.1063/1.2052507) DOI

Howes GG, Cowley SC, Dorland W, Hammett GW, Quataert E, Schekochihin AA. 2008. A model of turbulence in magnetized plasmas: implications for the dissipation range in the solar wind. J. Geophys. Res. 113, 5103 (10.1029/2007JA012665) DOI

Schekochihin AA, Cowley SC, Dorland W, Hammett GW, Howes GG, Quataert E, Tatsuno T. 2009. Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. Ser. 182, 310–377. (10.1088/0067-0049/182/1/310) DOI

Leamon RJ, Matthaeus WH, Smith CW, Zank GP, Mullan DJ, Oughton S. 2000. MHD-driven kinetic dissipation in the solar wind and corona. Astrophys. J. 537, 1054–1062. (10.1086/309059) DOI

Novikov EA, Stewart R. 1964. Intermittency of turbulence and spectrum of fluctuations in energy-disspation. Izv. Akad. Nauk. SSSR Ser. Geofiz. 3, 408–412.

Marsch E, Tu CY. 1994. Non-Gaussian probability distribution of solar wind fluctuations. Ann. Geophys. 12, 1127–1138. (10.1007/s00585-994-1127-8) DOI

Marsch E, Tu CY. 1997. Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind. Nonlinear Proc. Geophys. 4, 101–124. (10.5194/npg-4-101-1997) DOI

Alexandrova O, Carbone V, Veltri P, Sorriso-Valvo L. 2008. Small-scale energy cascade of the solar wind turbulence. Astrophys. J. 674, 1153–1157. (10.1086/524056) DOI

Bruno R, Carbone V, Sorriso-Valvo L, Bavassano B. 2003. Radial evolution of solar wind intermittency in the inner heliosphere. J.Geophys. Res. 108, 1130 (10.1029/2002JA009615) DOI

Riazantseva MO, Khabarova OV, Zastenker GN, Richardson JD. 2007. Sharp boundaries of the solar wind plasma structures and their relationship to the solar wind turbulence. Adv. Space Res. 40, 1802–1806. (10.1016/j.asr.2007.05.004) DOI

Riazantseva MO, Zastenker GN. 2008. The intermittency of ion density fluctuations and it's relation with sharp density changings. Cosm. Res. 46, 1–7. (10.1134/S0010952508010012) DOI

Riazantseva MO, Zastenker GN, Karavaev MV. 2010. Intermittency of solar wind ion flux and magnetic field fluctuations in the wide frequency region from 10−5 up to 1 Hz and the influence of sudden changes of ion flux. Solar Wind 12 Proc. 1216, 132–135. (10.1063/1.33958180) DOI

Pavlos GP, Karakatsanis LP, Xenakis MN, Pavlos EG, Iliopoulos AC, Sarafopoulos DV. 2014. Universality of non-extensive Tsallis statistics and time series analysis: theory and applications. Physica A. 395, 58–95. (10.1016/j.physa.2013.08.026) DOI

Tsallis C. 2011. The nonadditive entropy sq and its applications in physics and elsewhere: some remarks. Entropy 13, 1765–1804. (10.3390/e13101765) DOI

Milovanov AV, Zelenyi LM. 2000. Functional background of the Tsallis entropy: ‘coarse-grained’ systems and ‘kappa’ distribution functions. Nonlinear Process. Geophys. 7, 211–221. (10.5194/npg-7-211-2000) DOI

Pavlos GP, Iliopoulos AC, Zastenker GN, Zelenyi LM, Karakatsanis LP, Riazantseva M, Xenakis MN, Pavlos EG. 2013. Studying complexity in solar wind plasma during shock events. Part I: nonextensive Tsallis statistics. (http://arxiv.org/abs/1310.0525)

Pavlos GP, Iliopoulos AC, Zastenker GN, Zelenyi LM, Karakatsanis LP, Riazantseva M, Xenakis MN, Pavlos EG. 2015. Tsallis non-extensive statistics and solar wind plasma complexity. Physica A 422, 113–135. (10.1016/j.physa.2014.12.007) DOI

Umarov S, Tsallis C, Steinberg S. 2008. On a q-central limit theorem consistent with non-extensive statistical mechanics. Milan J. Math. 76, 307–328. (10.1007/s00032-008-0087-y) DOI

Burlaga LF. 1991. Intermittent turbulence in the solar wind. J. Geophys. Res. 96, 5847–5851. (10.1029/91JA00087) DOI

Benzi R, Ciliberto S, Tripiccione R, Baudet C, Massaioli F, Succi S. 1993. Extended selfsimilarity in turbulent flows. Phys. Rev. E. 24, 275–279. (10.1209/0295-5075/24/4/007) PubMed DOI

Dubrulle B. 1994. Intermittency in fully developed turbulence: log-Poisson statistics and generalized scale covariance. Phys. Rev. Lett. 73, 959 (10.1103/PhysRevLett.73.959) PubMed DOI

She ZS, Leveque E. 1994. Universal scaling laws in fully developed turbulence. Phys. Rev. Let. 72, 336–339. (10.1103/PhysRevLett.72.336) PubMed DOI

Budaev VP. 2009. Scaling properties of intermittent edge plasma turbulence. Phys. Lett. A. 373, 856–861. (10.1016/j.physleta.2008.12.055) DOI

Biskamp D, Mueller WC. 2003. Statistical anisotropy of, magnetohydrodynamic turbulence. Phys. Rev. E. 67, 066302 (10.1103/PhysRevE.67.066302) PubMed DOI

Borovsky J. 2008. Flux tube texture of the solar wind: strands of the magnetic carpet at 1 AU? J. Geophys. Res. 113, A08110 (10.1029/2007JA012684) DOI

Owens MJ, Wicks RT, Horbury TS. 2011. Magnetic discontinuities in the near-earth solar wind: evidence of in-transit turbulence or remnants of coronal structure? Solar Phys. 269, 411–420. (10.1007/s11207-010-9695-0) DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...