Distributed capillary adiabatic tissue homogeneity model in parametric multi-channel blind AIF estimation using DCE-MRI
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25865576
DOI
10.1002/mrm.25619
Knihovny.cz E-zdroje
- Klíčová slova
- arterial input function, dynamic contrast-enhanced magnetic resonance imaging, impulse residue function, multi-channel blind deconvolution, renal cell carcinoma,
- MeSH
- algoritmy * MeSH
- biologické modely * MeSH
- kapiláry diagnostické zobrazování MeSH
- karcinom z renálních buněk krevní zásobení diagnostické zobrazování MeSH
- kontrastní látky MeSH
- ledviny krevní zásobení diagnostické zobrazování MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- nádory ledvin krevní zásobení diagnostické zobrazování MeSH
- perfuzní zobrazování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kontrastní látky MeSH
PURPOSE: One of the main challenges in quantitative dynamic contrast-enhanced (DCE) MRI is estimation of the arterial input function (AIF). Usually, the signal from a single artery (ignoring contrast dispersion, partial volume effects and flow artifacts) or a population average of such signals (also ignoring variability between patients) is used. METHODS: Multi-channel blind deconvolution is an alternative approach avoiding most of these problems. The AIF is estimated directly from the measured tracer concentration curves in several tissues. This contribution extends the published methods of multi-channel blind deconvolution by applying a more realistic model of the impulse residue function, the distributed capillary adiabatic tissue homogeneity model (DCATH). In addition, an alternative AIF model is used and several AIF-scaling methods are tested. RESULTS: The proposed method is evaluated on synthetic data with respect to the number of tissue regions and to the signal-to-noise ratio. Evaluation on clinical data (renal cell carcinoma patients before and after the beginning of the treatment) gave consistent results. An initial evaluation on clinical data indicates more reliable and less noise sensitive perfusion parameter estimates. CONCLUSION: Blind multi-channel deconvolution using the DCATH model might be a method of choice for AIF estimation in a clinical setup.
Department of Biomedical Engineering Brno University of Technology Brno Czech Republic
Department of Biomedicine University of Bergen Bergen Norway
Citace poskytuje Crossref.org