Prognostic value of pentraxin-3 level in patients with STEMI and its relationship with heart failure and markers of oxidative stress
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem
PubMed
25922551
PubMed Central
PMC4397490
DOI
10.1155/2015/159051
Knihovny.cz E-zdroje
- MeSH
- 8-hydroxy-2'-deoxyguanosin MeSH
- biologické markery krev MeSH
- C-reaktivní protein metabolismus MeSH
- deoxyguanosin analogy a deriváty krev MeSH
- dusitany krev MeSH
- infarkt myokardu krev mortalita MeSH
- lidé středního věku MeSH
- lidé MeSH
- natriuretický peptid typu B krev MeSH
- neopterin krev MeSH
- oxidační stres * MeSH
- prediktivní hodnota testů MeSH
- senioři MeSH
- sérový amyloidový protein metabolismus MeSH
- srdeční selhání krev mortalita MeSH
- TNF-alfa krev MeSH
- troponin I krev MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 8-hydroxy-2'-deoxyguanosin MeSH
- biologické markery MeSH
- C-reaktivní protein MeSH
- deoxyguanosin MeSH
- dusitany MeSH
- natriuretický peptid typu B MeSH
- neopterin MeSH
- PTX3 protein MeSH Prohlížeč
- sérový amyloidový protein MeSH
- TNF-alfa MeSH
- troponin I MeSH
OBJECTIVE: Pentraxin-3 (PTX3) appears to have a cardioprotective effect through a positive influence against postreperfusion damage. This study assesses the prognostic value of PTX3 level and its relationship with clinical parameters and markers of oxidative stress and nitric oxide metabolism in patients with ST-elevation myocardial infarction (STEMI). METHODS: Plasma/serum levels of several biomarkers of inflammation and oxidative stress and nitrite/nitrate were assessed upon admission and 24 h after STEMI onset in patients treated by primary percutaneous coronary intervention. RESULTS: ROC analysis showed that plasma PTX3 at 24 h was a strong predictor of 30-day and 1-year mortality and independent predictor of combined end-point of left ventricle dysfunction or mortality in 1 year. The inflammatory response expressed by PTX3 had a significant relationship with age, heart failure, infarct size, impaired flow in the infarct-related artery, and renal function and positively correlated with neopterin, TNF-α, 8-hydroxy-2'-deoxyguanosine, and nitrite/nitrate. CONCLUSIONS: Plasma PTX3 at 24 h after STEMI onset is a strong predictor of 30-day and 1-year mortality. PTX3 as a single biomarker is comparable with currently used scoring systems (TIMI or GRACE) or B-type natriuretic peptide. PTX3 is also an independent predictor of combined end-point of left ventricle dysfunction or mortality in 1 year.
Department of Biochemistry Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
Department of Internal Medicine University Hospital 4031 Basel Switzerland
Institute of Biostatistics and Analyses Masaryk University 625 00 Brno Czech Republic
Zobrazit více v PubMed
Mueller C., Buettner H. J., Hodgson J. M., et al. Inflammation and long-term mortality after non-ST elevation acute coronary syndrome treated with a very early invasive strategy in 1042 consecutive patients. Circulation. 2002;105(12):1412–1415. doi: 10.1161/01.CIR.0000012625.02748.62. PubMed DOI
Schiele F., Meneveau N., Seronde M. F., et al. C-reactive protein improves risk prediction in patients with acute coronary syndromes. European Heart Journal. 2010;31(3):290–297. doi: 10.1093/eurheartj/ehp273. PubMed DOI
Lagrand W. K., Niessen H. W. M., Wolbink G. J., et al. C-reactive protein colocalizes with complement in human hearts during acute myocardial infarction. Circulation. 1997;95(1):97–103. doi: 10.1161/01.cir.95.1.97. PubMed DOI
Takahashi T., Anzai T., Kaneko H., et al. Increased C-reactive protein expression exacerbates left ventricular dysfunction and remodeling after myocardial infarction. The American Journal of Physiology—Heart and Circulatory Physiology. 2010;299(6):H1795–H1804. doi: 10.1152/ajpheart.00001.2010. PubMed DOI
Takahashi T., Anzai T., Yoshikawa T., et al. Serum C-reactive protein elevation in left ventricular remodeling after acute myocardial infarction—role of neurohormones and cytokines. International Journal of Cardiology. 2003;88(2-3):257–265. doi: 10.1016/s0167-5273(02)00416-3. PubMed DOI
Nauta A. J., Bottazzi B., Mantovani A., et al. Biochemical and functional characterization of the interaction between pentraxin 3 and C1q. European Journal of Immunology. 2003;33(2):465–473. doi: 10.1002/immu.200310022. PubMed DOI
Deban L., Russo R. C., Sironi M., et al. Regulation of leukocyte recruitment by the long pentraxin PTX3. Nature Immunology. 2010;11(4):328–334. doi: 10.1038/ni.1854. PubMed DOI
Maugeri N., Rovere-Querini P., Slavich M., et al. Early and transient release of leukocyte pentraxin 3 during acute myocardial infarction. Journal of Immunology. 2011;187(2):970–979. doi: 10.4049/jimmunol.1100261. PubMed DOI
Salio M., Chimenti S., de Angelis N., et al. Cardioprotective function of the long pentraxin PTX3 in acute myocardial infarction. Circulation. 2008;117(8):1055–1064. doi: 10.1161/circulationaha.107.749234. PubMed DOI
Peri G., Introna M., Corradi D., et al. PTX3, a prototypical long pentraxin, is an early indicator of acute myocardial infarction in humans. Circulation. 2000;102(6):636–641. doi: 10.1161/01.CIR.102.6.636. PubMed DOI
Nebuloni M., Pasqualini F., Zerbi P., et al. PTX3 expression in the heart tissues of patients with myocardial infarction and infectious myocarditis. Cardiovascular Pathology. 2011;20(1):e27–e35. doi: 10.1016/j.carpath.2010.02.005. PubMed DOI
Garlanda C., Bottazzi B., Bastone A., Mantovani A. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annual Review of Immunology. 2005;23:337–366. doi: 10.1146/annurev.immunol.23.021704.115756. PubMed DOI
Basile A., Sica A., D'Aniello E., et al. Characterization of the promoter for the human long pentraxin PTX3: role of NF-κB in tumor necrosis factor-α and interleukin-1β regulation. The Journal of Biological Chemistry. 1997;272(13):8172–8178. doi: 10.1074/jbc.272.13.8172. PubMed DOI
Latini R., Maggioni A. P., Peri G., et al. Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction. Circulation. 2004;110(16):2349–2354. doi: 10.1161/01.CIR.0000145167.30987.2E. PubMed DOI
Eggers K. M., Armstrong P. W., Califf R. M., et al. Clinical and prognostic implications of circulating pentraxin 3 levels in non ST-elevation acute coronary syndrome. Clinical Biochemistry. 2013;46(16-17):1655–1659. doi: 10.1016/j.clinbiochem.2013.08.014. PubMed DOI
Eagle K. A., Lim M. J., Dabbous O. H., et al. A validated prediction model for all forms of acute coronary syndrome—estimating the risk of 6-month postdischarge death in an international registry. Journal of the American Medical Association. 2004;291(22):2727–2733. doi: 10.1001/jama.291.22.2727. PubMed DOI
Morrow D. A., Antman E. M., Charlesworth A., et al. TIMI risk score for ST-elevation myocardial infarction: a convenient, bedside, clinical score for risk assessment at presentation—an intravenous nPA for treatment of infarcting myocardium early II trial substudy. Circulation. 2000;102(17):2031–2037. doi: 10.1161/01.cir.102.17.2031. PubMed DOI
Mueller C. Biomarkers and ST-elevation myocardial infarction. Heart. 2013;99(16) doi: 10.1136/heartjnl-2013-303667. PubMed DOI
Benzie I. F. F., Strain J. J. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology: Oxidants and Antioxidants Part A. 1999;299:15–27. doi: 10.1016/s0076-6879(99)99005-5. PubMed DOI
Khoschsorur G. A., Winklhofer-Roob B. M., Rabl H., Auer T., Peng Z., Schaur R. J. Evaluation of a sensitive HPLC method for the determination of malondialdehyde, and application of the method to different biological materials. Chromatographia. 2000;52(3-4):181–184. doi: 10.1007/bf02490453. DOI
Vester B., Rasmussen K. High performance liquid chromatography method for rapid and accurate determination of homocysteine in plasma and serum. European Journal of Clinical Chemistry and Clinical Biochemistry. 1991;29(9):549–554. PubMed
Driskell W. J., Neese J. W., Bryant C. C., Bashor M. M. Measurement of vitamin A and vitamin E in human serum by high-performance liquid chromatography. Journal of Chromatography. 1982;231(2):439–444. doi: 10.1016/S0378-4347(00)81869-1. PubMed DOI
Kundu S., Aulchenko Y. S., Van Duijn C. M., Janssens A. C. J. W. PredictABEL: an R package for the assessment of risk prediction models. European Journal of Epidemiology. 2011;26(4):261–264. doi: 10.1007/s10654-011-9567-4. PubMed DOI PMC
Barbati E., Specchia C., Villella M., et al. nfluence of pentraxin 3 (PTX3) genetic variants on myocardial infarction risk and PTX3 plasma levels. PLoS ONE. 2012;7(12) doi: 10.1371/journal.pone.0053030.e53030 PubMed DOI PMC
Weisman H. F., Bartow T., Leppo M. K., et al. Soluble human complement receptor type 1—in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science. 1990;249(4965):146–151. doi: 10.1126/science.2371562. PubMed DOI
Kunes P., Holubcova Z., Kolackova M., Krejsek J. Pentraxin 3(PTX 3): an endogenous modulator of the inflammatory response. Mediators of Inflammation. 2012;2012:10. doi: 10.1155/2012/920517.920517 PubMed DOI PMC
Anzai T., Yoshikawa T., Shiraki H., et al. C-reactive protein as a predictor of infarct expansion and cardiac rupture after a first Q-wave acute myocardial infarction. Circulation. 1997;96(3):778–784. doi: 10.1161/01.CIR.96.3.778. PubMed DOI
Scirica B. M., Morrow D. A., Cannon C. P., et al. Clinical application of C-reactive protein across the spectrum of acute coronary syndromes. Clinical Chemistry. 2007;53(10):1800–1807. doi: 10.1373/clinchem.2007.087957. PubMed DOI
Newby L. K., Marber M. S., Melloni C., et al. Losmapimod, a novel p38 mitogen-activated protein kinase inhibitor, in non-ST-segment elevation myocardial infarction: a randomised phase 2 trial. The Lancet. 2014;384(9949):1187–1195. doi: 10.1016/s0140-6736(14)60417-7. PubMed DOI
Huber C., Batchelor J. R., Fuchs D., et al. Immune response-associated production of neopterin—release from macrophages primarily under control of interferon-gamma. Journal of Experimental Medicine. 1984;160(1):310–316. doi: 10.1084/jem.160.1.310. PubMed DOI PMC
Dominguez-Rodriguez A., Abreu-Gonzalez P., Garcia-Gonzalez M. Usefulness of neopterin levels and left ventricular function for risk assessment in survivors of acute myocardial infarction. International Journal of Cardiology. 2006;111(2):318–320. doi: 10.1016/j.ijcard.2005.11.024. PubMed DOI
Dominguez-Rodriguez A., Abreu-Gonzalez P., Avanzas P., Laynez-Cerdeña I., Kaski J. C. Neopterin predicts left ventricular remodeling in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Atherosclerosis. 2010;211(2):574–578. doi: 10.1016/j.atherosclerosis.2010.04.017. PubMed DOI
Gilles S., Zahler S., Welsch U., Sommerhoff C. P., Becker B. F. Release of TNF-alpha during myocardial reperfusion depends on oxidative stress and is prevented by mast cell stabilizers. Cardiovascular Research. 2003;60(3):608–616. doi: 10.1016/j.cardiores.2003.08.016. PubMed DOI
Kehmeier E. S., Lepper W., Kropp M., et al. TNF-α, myocardial perfusion and function in patients with ST-segment elevation myocardial infarction and primary percutaneous coronary intervention. Clinical Research in Cardiology. 2012;101(10):815–827. doi: 10.1007/s00392-012-0465-x. PubMed DOI
Hochman J. S. Cardiogenic shock complicating acute myocardial infarction: expanding the paradigm. Circulation. 2003;107(24):2998–3002. doi: 10.1161/01.cir.0000075927.67673.f2. PubMed DOI
Monassier J. P. Reperfusion injury in acute myocardial infarction. From bench to cath lab. Part I: basic considerations. Archives of Cardiovascular Diseases. 2008;101(7-8):491–500. doi: 10.1016/j.acvd.2008.06.014. PubMed DOI
Najar R. A., Ghaderian S. M. H., Vakili H., et al. The role of p53, bax, bcl2, and 8-OHdG in human acute myocardial infarction. Central European Journal of Biology. 2010;5(4):439–445. doi: 10.2478/s11535-010-0030-4. DOI
Inafuku H., Kuniyoshi Y., Yamashiro S., et al. Determination of oxidative stress and cardiac dysfunction after ischemia/reperfusion injury in isolated rat hearts. Annals of Thoracic and Cardiovascular Surgery. 2013;19(3):186–194. doi: 10.5761/atcs.oa.12.01896. PubMed DOI
Lazzeri C., Valente S., Chiostri M., Sori A., Bernardo P., Gensini G. F. Uric acid in the acute phase of ST elevation myocardial infarction submitted to primary PCI: its prognostic role and relation with inflammatory markers. A single center experience. International Journal of Cardiology. 2010;138(2):206–209. doi: 10.1016/j.ijcard.2008.06.024. PubMed DOI
Hill A. L., Lowes D. A., Webster N. R., Sheth C. C., Gow N. A. R., Galley H. F. Regulation of pentraxin-3 by antioxidants. British Journal of Anaesthesia. 2009;103(6):833–839. doi: 10.1093/bja/aep298. PubMed DOI PMC
Simić D., Mimić-Oka J., Pljesša M., et al. Time course erythrocyte antioxidant activity in patients treated by thrombolysis for acute myocardial infarction. Japanese Heart Journal. 2003;44(6):823–832. doi: 10.1536/jhj.44.823. PubMed DOI
Bagatini M. D., Martins C. C., Battisti V., et al. Oxidative stress versus antioxidant defenses in patients with acute myocardial infarction. Heart and Vessels. 2011;26(1):55–63. doi: 10.1007/s00380-010-0029-9. PubMed DOI