Genetic interrelationships of North American populations of giant liver fluke Fascioloides magna
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26017023
PubMed Central
PMC4469101
DOI
10.1186/s13071-015-0895-1
PII: 10.1186/s13071-015-0895-1
Knihovny.cz E-resources
- MeSH
- Fasciola hepatica classification enzymology genetics isolation & purification MeSH
- Fascioliasis epidemiology parasitology veterinary MeSH
- Phylogeny MeSH
- Genetic Variation MeSH
- Molecular Sequence Data MeSH
- Ruminants parasitology MeSH
- Helminth Proteins genetics metabolism MeSH
- Electron Transport Complex IV genetics metabolism MeSH
- Deer MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Quebec MeSH
- United States MeSH
- Names of Substances
- Helminth Proteins MeSH
- Electron Transport Complex IV MeSH
BACKGROUND: Population structure and genetic interrelationships of giant liver fluke Fascioloides magna from all enzootic North American regions were revealed in close relation with geographical distribution of its obligate definitive cervid hosts for the first time. METHODS: Variable fragments of the mitochondrial cytochrome c oxidase subunit I (cox1; 384 bp) and nicotinamide dehydrogenase subunit I (nad1; 405 bp) were applied as a tool. The concatenated data set of both cox1 and nad1 sequences (789 bp) contained 222 sequences that resulted in 50 haplotypes. Genetic data were analysed using Bayesian Inference (BI), Maximum Likelihood (ML) and Analysis of Molecular Variance (AMOVA). RESULTS: Phylogenetic analysis revealed two major clades of F. magna, which separated the parasite into western and eastern populations. Western populations included samples from Rocky Mountain trench (Alberta) and northern Pacific coast (British Columbia and Oregon), whereas, the eastern populations were represented by individuals from the Great Lakes region (Minnesota), Gulf coast, lower Mississippi, and southern Atlantic seaboard region (Mississippi, Louisiana, South Carolina, Georgia, Florida) and northern Quebec and Labrador. Haplotype network and results of AMOVA analysis confirmed explicit genetic separation of western and eastern populations of the parasite that suggests long term historical isolation of F. magna populations. CONCLUSION: The genetic makeup of the parasite's populations correlates with data on historical distribution of its hosts. Based on the mitochondrial data there are no signs of host specificity of F. magna adults towards any definitive host species; the detected haplotypes of giant liver fluke are shared amongst several host species in adjacent populations.
Geneton Ltd Ilkovičova 3 84104 Bratislava Slovakia
Institute of Parasitology Slovak Academy of Sciences Hlinkova 3 04001 Košice Slovakia
See more in PubMed
Prugnolle F, Liua H, de Meeu T, Ballouxa F. Population genetics of complex life-cycle parasites: an illustration with trematodes. Int J Parasitol. 2005;35:255–63. doi: 10.1016/j.ijpara.2004.10.027. PubMed DOI
Štefka J, Hypša V, Scholz T. Interplay of host specificity and biogeography in the population structure of a cosmopolitan endoparasite: microsatellite study of Ligula intestinalis (Cestoda) Mol Ecol. 2009;18:1187–206. doi: 10.1111/j.1365-294X.2008.04074.x. PubMed DOI
Poulin R, Krasnov BR, Mouillot D, Thieltges DW. The comparative ecology and biogeography of parasites. Philos Trans R Soc Lond B Biol Sci. 2011;366:2379–90. doi: 10.1098/rstb.2011.0048. PubMed DOI PMC
Renaud F, Clayton D, de Meeüs T. Biodiversity and evolution in host-parasite associations. Biodivers Conserv. 1996;5:963–74. doi: 10.1007/BF00054414. DOI
Salzet M, Capron A, Stefano GB. Molecular crosstalk in host-parasite relationships: schistosome and leech host interactions. Parasitol Today. 2000;16:536–40. doi: 10.1016/S0169-4758(00)01787-7. PubMed DOI
Pybus MJ. Liver flukes. In: Samuel WM, Pybus MJ, Kocan AA, editors. Parasitic Diseases of Wild Mammals. 2. Iowa: Iowa State University Press, Ames; 2001.
Králová-Hromadová I, Bazsalovicsová E, Demiaszkiewicz A. Molecular characterization of Fascioloides magna (Trematoda: Fasciolidae) from south-western Poland based on mitochondrial markers. Acta Parasitol. 2015;60:544–7. PubMed
Marinković D, Kukolj V, Aleksić-Kovačević S, Jovanović M, Knežević M. The role of hepatic myofibroblasts in liver cirrhosis in fallow deer (Dama dama) naturally infected with giant liver fluke (Fascioloides magna) BMC Vet Res. 2013;9:45. doi: 10.1186/1746-6148-9-45. PubMed DOI PMC
Erhardová-Kotrlá B. The occurrence of Fascioloides magna (Bassi, 1875) in Czechoslovakia. Prague: Academia Publishing House of the Czechoslovak Academy of Sciences; 1971.
Rajský D, Patus A, Bukovjan K. Prvý nález Fascioloides magna (Bassi, 1875) na Slovensku. Slovenský veterinárny časopis. 1994;19:29–30.
Faltýnková A, Horáčková E, Hirtová L, Novobilský A, Modrý D, Scholz T. Is Radix peregra a new intermediate host of Fascioloides magna (Trematoda) in Europe? Field and experimental evidence. Acta Parasitol. 2006;51:87–90.
Rajský D, Čorba J, Várady M, Špakulová M, Cabadaj R. Control of fascioloidosis (Fascioloides magna Bassi, 1875) in red deer and roe deer. Helminthologia. 2002;39:67–70.
Králová-Hromadová I, Bazsalovicsová E, Štefka J, Špakulová M, Vávrová S, Szemes T, et al. Multiple origins of European populations of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae), a liver parasite of ruminants. Int J Parasitol. 2011;41:373–83. doi: 10.1016/j.ijpara.2010.10.010. PubMed DOI
Králová-Hromadová I, Špakulová M, Horáčková E, Turčeková Ľ, Novobilský A, Beck R, et al. Sequence analysis of ribosomal and mitochondrial genes of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae): intraspecific variation and differentiation from Fasciola hepatica. J Parasitol. 2008;94:58–67. doi: 10.1645/GE-1324.1. PubMed DOI
Werle E, Schneider C, Renner M, Volker M, Fiehn W. Convenient singlestep, one tube purification of PCR products for direct sequencing. Nucleic Acids Res. 1994;22:4354–5. doi: 10.1093/nar/22.20.4354. PubMed DOI PMC
Garey JR, Wolstenholme DR. Platyhelminth mitochondrial DNA: Evidence for early evolutionary origin of a tRNA (serAGN) that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons. J Mol Evol. 1989;28:374–87. doi: 10.1007/BF02603072. PubMed DOI
Ohama T, Osawa S, Watanabe K, Jukes TH. Evolution of the mitochondrial genetic code. IV. AAA as an asparagine codon in some animal mitochondria. J Mol Evol. 1990;30:329–32. doi: 10.1007/BF02101887. PubMed DOI
Gouy M, Guindon S, Gascuel O. SeaView Version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27:221–4. doi: 10.1093/molbev/msp259. PubMed DOI
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst Biol. 2010;59:307–21. doi: 10.1093/sysbio/syq010. PubMed DOI
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Lanfear R, Calcott B, Ho SYW, Guindon S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol. 2012;29:1695–701. doi: 10.1093/molbev/mss020. PubMed DOI
Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000;9:1657–9. doi: 10.1046/j.1365-294x.2000.01020.x. PubMed DOI
Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564–7. doi: 10.1111/j.1755-0998.2010.02847.x. PubMed DOI
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–2. doi: 10.1093/bioinformatics/btp187. PubMed DOI
Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking, and background selection. Genetics. 1997;147:915–25. PubMed PMC
Dobson A, Carper R. Global Warming and Potential changes in Host-Parasite and Disease-Vector Relationships. In: Peters RL, Lovejoy TE, editors. Global warming and biodiversity. New Haven, CT: Yale University Press; 1992. pp. 201–17.
van Schaik J, Kerth G, Bruyndonckx N, Christe P. The effect of host social system on parasite population genetic structure: comparative population genetics of two ectoparasitic mites and their bat hosts. BMC Evol Biol. 2014;14:18. doi: 10.1186/1471-2148-14-18. PubMed DOI PMC
Roth JA, Laerm J. A late Pleistocene vertebrate assemblage from Edisto Island. SC Brimleyana. 1980;3:1–29.
Noble RE. Mississippi deer herd: past and present. Mississippi Game and Fish. 1966;29:14–5.
Ellsworth DL, Honeycutt RL, Silvy NJ, Bickham JW, Klimstra WD. Historical biogeography and contemporary patterns of mitochondrial DNA variation in white-tailed deer from the Southeastern United States. Evolution. 1994;48:122–36. doi: 10.2307/2410008. PubMed DOI
Burns JA. Mammalian faunal dynamics in Late Pleistocene Alberta. Canada Quatern Int. 2010;217:37–42. doi: 10.1016/j.quaint.2009.08.003. DOI
Pybus MJ, Butterworth EW, Woodes JG. An expanding population of giant liver fluke (Fascioloides magna) in elk (Cervus canadensis) and other ungulates in Canada. J Wildl Dis. 2015;51:431–5. doi: 10.7589/2014-09-235. PubMed DOI
Cullingham CI, Merrill EH, Pybus MJ, Bollinger TK, Wilson GA, Coltman DW. Broad and fine-scale analysis of white-tailed deer populations: estimating the relative risk of chronic wasting disease spread. Evol Appl. 2011;4:116–31. doi: 10.1111/j.1752-4571.2010.00142.x. PubMed DOI PMC
Latch EK, Heffelfinger JR, Fike JA, Rhodes OE., Jr Species-wide phylogeography of North American mule deer (Odocoileus hemionus): cryptic glacial refugia and postglacial recolonization. Mol Ecol. 2009;18:1730–45. doi: 10.1111/j.1365-294X.2009.04153.x. PubMed DOI
McDevitt AD, Mariani S, Hebblewhite M, Decesare NJ, Morgantini L, Seip D, et al. Survival in the Rockies of an endangered hybrid swarm from diverged caribou (Rangifer tarandus) lineages. Mol Ecol. 2009;18:665–79. doi: 10.1111/j.1365-294X.2008.04050.x. PubMed DOI
Kurtén B, Anderson E. Pleistocene mammals of North America. New York: Columbia University Press; 1980.
Cringan AT. History, food habits and range requirements of the woodland caribou of continental North America. T N Am Wildl Nat Res. 1957;22:485–501.
Heinselman ML. Fire in the Virgin Forests of the Boundary Waters Canoe Area. Minnesota Quaternary Res. 1973;3:329–82.
Churcher CS, Parmalee PW, Bell GL, Lamb JP. Caribou from the late Pleistocene of northwestern Alabama. Can J Zool. 1989;67:1210–6. doi: 10.1139/z89-175. DOI
Banfield AWF. The mammals of Canada. Toronto: University of Toronto Press; 1974.
Bryant LD, Maser C. Classification and distribution. In: Thomas JW, Toweill DE, editors. Elk of North America. Harrisburg: PA: Stackpole Books; 1982. pp. 1–59.
Leo S, Samuel WM, Pybus MJ, Sperling FD. Origin of Dermacentor albipictus (Acari: Ixodidae) on elk in the Yukon. Canada J Wildl Dis. 2014;50:544–51. doi: 10.7589/2013-03-078. PubMed DOI
Minárik G, Bazsalovicsová E, Zvijáková Ľ, Štefka J, Pálková L, Králová-Hromadová I. Development and characterization of multiplex panels of polymorphic microsatellite loci in giant liver fluke Fascioloides magna (Trematoda: Fasciolidae), using next-generation sequencing approach. Mol Biochem Parasitol. 2014;195:30–3. doi: 10.1016/j.molbiopara.2014.06.003. PubMed DOI