• This record comes from PubMed

Monitoring protein phosphorylation by acrylamide pendant Phos-Tag™ in various plants

. 2015 ; 6 () : 336. [epub] 20150513

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

The aim of the present study is to rationalize acrylamide pendant Phos-Tag™ in-gel discrimination of phosphorylated and non-phosphorylated plant protein species with standard immunoblot analysis, and optimize sample preparation, efficient electrophoretic separation and transfer. We tested variants of the method including extraction buffers suitable for preservation of phosphorylated protein species in crude extracts from plants and we addressed the importance of the cation (Mn(2+) or Zn(2+)) used in the gel recipe for efficient transfer to PVDF membranes for further immunoblot analysis. We demonstrate the monitoring of Medicago sativa stress-induced mitogen activated protein kinase (SIMK) in stress-treated wild type plants and transgenic SIMKK RNAi line. We further show the hyperosmotically-induced phosphorylation of the previously uncharacterized HvMPK4 of barley. The method is validated using inducible phosphorylation of barley and wheat α-tubulin and of Arabidopsis MPK6. Acrylamide pendant Phos-Tag™offers a flexible tool for studying protein phosphorylation in crops and Arabidopsis circumventing radioactive labeling and the use of phosphorylation specific antibodies.

See more in PubMed

Anderson J. C., Peck S. C. (2008). A simple and rapid technique for detecting protein phosphorylation using one-dimensional isoelectric focusing gels and immunoblot analysis. Plant J. 55, 881–885. 10.1111/j.1365-313X.2008.03550.x PubMed DOI

Anderson J. C., Peck S. C. (2014). Detection of protein phosphorylation and charge isoforms using vertical one-dimensional isoelectric focusing gels. Methods Mol. Biol. 1171, 39–46. 10.1007/978-1-4939-0922-3_4 PubMed DOI

Austin S., Bingham E. T., Mathews D. E., Shahan M. N., Will J., Burgess R. R. (1995). Production and field performance of transgenic alfalfa (Medicago sativa L.) expressing alpha amylase and manganese-dependent lignin peroxidase. Euphytica 85, 381–393 10.1007/BF00023971 DOI

Ban Y., Kobayashi Y., Hara T., Hamada T., Hashimoto T., Takeda S., et al. . (2013). α-tubulin is rapidly phosphorylated in response to hyperosmotic stress in rice and Arabidopsis. Plant Cell Physiol. 54, 848–858. 10.1093/pcp/pct065 PubMed DOI

Barbieri C. M., Stock A. M. (2008). Universally applicable methods for monitoring response regulator aspartate phosphorylation both in vitro and in vivo using Phos-tag-based reagents. Anal Biochem. 376, 73–82. 10.1016/j.ab.2008.02.004 PubMed DOI PMC

Beck M., Komis G., Müller J., Menzel D., Šamaj J. (2010). Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell. 22, 755–771. 10.1105/tpc.109.071746 PubMed DOI PMC

Bethke G., Unthan T., Uhrig J. F., Pöschl Y., Gust A. A., Scheel D., et al. . (2009). Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc. Natl. Acad. Sci. U.S.A. 106, 8067–8072. 10.1073/pnas.0810206106 PubMed DOI PMC

Boesger J., Wagner V., Weisheit W., Mittag M. (2012). Application of phosphoproteomics to find targets of casein kinase 1 in the flagellum of chlamydomonas. Int. J. Plant Genomics 2012:581460. 10.1155/2012/581460 PubMed DOI PMC

Cardinale F., Meskiene I., Ouaked F., Hirt H. (2002). Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell 14, 703–711. 10.1105/tpc.010256 PubMed DOI PMC

Cuenda A. (2000). Methods to assay stress-activated protein kinases. Methods Mol. Biol. 99, 127–143. 10.1385/1-59259-054-3:127 PubMed DOI

Dickson C. (2008). Protein techniques: immunoprecipitation, in vitro kinase assays, and Western blotting. Methods Mol. Biol. 461, 735–744. 10.1007/978-1-60327-483-8_53 PubMed DOI

Dissmeyer N., Schnittger A. (2011). The age of protein kinases. Methods Mol. Biol. 779, 7–52. 10.1007/978-1-61779-264-9_2 PubMed DOI

Fujita S., Pytela J., Hotta T., Kato T., Hamada T., Akamatsu R., et al. . (2013). An atypical tubulin kinase mediates stress-induced microtubule depolymerization in Arabidopsis. Curr. Biol. 23, 1969–1978. 10.1016/j.cub.2013.08.006 PubMed DOI

Ishihama N., Yoshioka H. (2012). Post-translational regulation of WRKY transcription factors in plant immunity. Curr. Opin. Plant Biol. 15, 431–437. 10.1016/j.pbi.2012.02.003 PubMed DOI

Ishii E., Eguchi Y., Utsumi R. (2013). Mechanism of activation of PhoQ/PhoP two-component signal transduction by SafA, an auxiliary protein of PhoQ histidine kinase in Escherichia coli. Biosci. Biotechnol. Biochem. 77, 814–819. 10.1271/bbb.120970 PubMed DOI

Kang S., Yang F., Li L., Chen H., Chen S., Zhang J. (2015). The Arabidopsis transcription factor BES1 is a direct substrate of MPK6 and regulates immunity. Plant Physiol. 167, 1076–1086. 10.1104/pp.114.250985 PubMed DOI PMC

Kiegerl S., Cardinale F., Siligan C., Gross A., Baudouin E., Liwosz A., et al. . (2000). SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell. 12, 2247–2258. 10.1105/tpc.12.11.2247 PubMed DOI PMC

Kinoshita E., Kinoshita-Kikuta E. (2011). Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced protein phosphorylation profiling. Proteomics 11, 319–323. 10.1002/pmic.201000472 PubMed DOI

Kinoshita E., Kinoshita-Kikuta E., Koike T. (2012). Phos-tag SDS-PAGE systems for phosphorylation profiling of proteins with a wide range of molecular masses under neutral pH conditions. Proteomics 12, 192–202. 10.1002/pmic.201100524 PubMed DOI

Kinoshita E., Kinoshita-Kikuta E., Ujihara H., Koike T. (2009). Mobility shift detection of phosphorylation on large proteins using a Phos-tag SDS-PAGE gel strengthened with agarose. Proteomics 9, 4098–4101. 10.1002/pmic.200900020 PubMed DOI

Kinoshita E., Kinoshita-Kikuta E., Shiba A., Edahiro K., Inoue Y., Yamamoto K., et al. . (2014). Profiling of protein thiophosphorylation by Phos-tag affinity electrophoresis: evaluation of adenosine 5'-O-(3-thiotriphosphate) as a phosphoryl donor in protein kinase reactions. Proteomics 14, 668–679. 10.1002/pmic.201300533 PubMed DOI

Kinoshita E., Kinoshita-Kikuta E., Takiyama K., Koike T. (2006). Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol. Cell. Proteomics 5, 749–757. 10.1074/mcp.T500024-MCP200 PubMed DOI

Kinoshita-Kikuta E., Kinoshita E., Matsuda A., Koike T. (2014). Tips on improving the efficiency of electrotransfer of target proteins from Phos-tag SDS-PAGE gel. Proteomics 14, 2437–2442. 10.1002/pmic.201400380 PubMed DOI

Komis G., Takáč T., Bekešová S., Vadovič P., Šamaj J. (2014). Affinity-based SDS PAGE identification of phosphorylated Arabidopsis MAPKs and substrates by acrylamide pendant Phos-Tag™. Methods Mol. Biol. 1171, 47–63. 10.1007/978-1-4939-0922-3_5 PubMed DOI

Kosako H. (2009). Phos-tag Western blotting for detecting stoichiometric protein phosphorylation in cells. Protoc. Exch. 10.1038/nprot.2009.170 DOI

Li R. F., Lu G. T., Li L., Su H. Z., Feng G. F., Chen Y., et al. . (2014). Identification of a putative cognate sensor kinase for the two-component response regulator HrpG, a key regulator controlling the expression of the hrp genes in Xanthomonas campestris pv. campestris. Environ. Microbiol. 16, 2053–2071. 10.1111/1462-2920.12207 PubMed DOI

Liu Y., Chance M. R. (2014). Integrating phosphoproteomics in systems biology. Comput. Struct. Biotechnol. J. 10, 90–97. 10.1016/j.csbj.2014.07.003 PubMed DOI PMC

Mao G., Meng X., Liu Y., Zheng Z., Chen Z., Zhang S. (2011). Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23, 1639–1653. 10.1105/tpc.111.084996 PubMed DOI PMC

Meng X., Xu J., He Y., Yang K. Y., Mordorski B., Liu Y., et al. . (2013). Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25, 1126–1142. 10.1105/tpc.112.109074 PubMed DOI PMC

Müller J., Beck M., Mettbach U., Komis G., Hause G., Menzel D., et al. . (2010). Arabidopsis MPK6 is involved in cell division plane control during early root development, and localizes to the pre-prophase band, phragmoplast, trans-Golgi network and plasma membrane. Plant J. 61, 234–248. 10.1111/j.1365-313X.2009.04046.x PubMed DOI

Nishi H., Fong J. H., Chang C., Teichmann S. A., Panchenko A. R. (2013). Regulation of protein-protein binding by coupling between phosphorylation and intrinsic disorder: analysis of human protein complexes. Mol. Biosyst. 9, 1620–1626. 10.1039/c3mb25514j PubMed DOI PMC

Nishi H., Shaytan A., Panchenko A. R. (2014). Physicochemical mechanisms of protein regulation by phosphorylation. Front. Genet. 5:270. 10.3389/fgene.2014.00270 PubMed DOI PMC

Offringa R., Huang F. (2013). Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells. J. Integr. Plant Biol. 55, 789–808. 10.1111/jipb.12096 PubMed DOI

Ovečka M., Takáč T., Komis G., Vadovič P., Bekešová S., Doskočilová A., et al. . (2014). Salt-induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis. J. Exp. Bot. 65, 2335–2350. 10.1093/jxb/eru115 PubMed DOI PMC

Panteris E., Komis G., Adamakis I. D., Šamaj J., Bosabalidis A. M. (2010). MAP65 in tubulin/colchicine paracrystals of Vigna sinensis root cells: possible role in the assembly and stabilization of atypical tubulin polymers. Cytoskeleton 67, 152–160. 10.1002/cm.20432 PubMed DOI

Pitzschke A. (2015). Modes of MAPK substrate recognition and control. Trends Plant Sci. 20, 49–55. 10.1016/j.tplants.2014.09.006 PubMed DOI

Ruse C. I., McClatchy D. B., Lu B., Cociorva D., Motoyama A., Park S. K., et al. . (2008). Motif-specific sampling of phosphoproteomes. J. Proteome Res. 7, 2140–2150. 10.1021/pr800147u PubMed DOI PMC

Salazar C., Höfer T. (2009). Multisite protein phosphorylation–from molecular mechanisms to kinetic models. FEBS J. 276, 3177–3198. 10.1111/j.1742-4658.2009.07027.x PubMed DOI

Samac D. A., Austin-Phillips S. (2006). Alfalfa (Medicago sativa L.). Methods Mol. Biol. 343, 301–311. 10.1385/1-59745-130-4:301 PubMed DOI

Šamaj J., Ovečka M., Hlavačka A., Lecourieux F., Meskiene I., Lichtscheidl I., et al. . (2002). Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J. 21, 3296–3306. 10.1093/emboj/cdf349 PubMed DOI PMC

Šamajová O., Komis G., Šamaj J. (2013). Emerging topics in the cell biology of mitogen-activated protein kinases. Trends Plant Sci. 18, 140–148. 10.1016/j.tplants.2012.11.004 PubMed DOI

Semagn K. (2014). Leaf tissue sampling and DNA extraction protocols. Methods Mol. Biol. 1115, 53–67. 10.1007/978-1-62703-767-9_3 PubMed DOI

Sheremet Y. A., Yemets A. I., Azmi A., Vissenberg K., Verbelen J. P., Blume Y. B. (2012b). Effects of tyrosine kinase and phosphatase inhibitors on mitosis progression in synchronized tobacco BY-2 cells. Tsitol. Genet. 46, 3–11. 10.3103/S0095452712050088 PubMed DOI

Sheremet Y. A., Yemets A. I., Blume Y. B. (2012a). Inhibitors of tyrosine kinases and phosphatases as a tool for the investigation of microtubule role in plant cold response. Tsitol. Genet. 46, 3–9. 10.3103/S0095452712010112 PubMed DOI

Smékalová V., Luptovčiak I., Komis G., Šamajová O., Ovečka M., Doskočilová A., et al. . (2014). Involvement of YODA and mitogen activated protein kinase 6 in Arabidopsis post-embryogenic root development through auxin up-regulation and cell division plane orientation. New Phytol. 203, 1175–1193. 10.1111/nph.12880 PubMed DOI PMC

St-Denis N., Gingras A. C. (2012). Mass spectrometric tools for systematic analysis of protein phosphorylation. Prog. Mol. Biol. Transl. Sci. 106, 3–32. 10.1016/B978-0-12-396456-4.00014-6 PubMed DOI

Taylor K. W., Kim J. G., Su X. B., Aakre C. D., Roden J. A., Adams C. M., et al. . (2012). Tomato TFT1 is required for PAMP-triggered immunity and mutations that prevent T3S effector XopN from binding to TFT1 attenuate Xanthomonas virulence. PLoS Pathog. 8:e1002768. 10.1371/journal.ppat.1002768 PubMed DOI PMC

Wang P., Du Y., Zhao X., Miao Y., Song C. P. (2013). The MPK6-ERF6-ROS-responsive cis-acting Element7/GCC box complex modulates oxidative gene transcription and the oxidative response in Arabidopsis. Plant Physiol. 161, 1392–1408. 10.1104/pp.112.210724 PubMed DOI PMC

Willmann R., Haischer D. J., Gust A. A. (2014). Analysis of MAPK activities using MAPK-specific antibodies. Methods Mol. Biol. 1171, 27–37. 10.1007/978-1-4939-0922-3_3 PubMed DOI

Yemets A., Sheremet Y., Vissenberg K., Van Orden J., Verbelen J. P., Blume Y. B. (2008). Effects of tyrosine kinase and phosphatase inhibitors on microtubules in Arabidopsis root cells. Cell Biol. Int. 32, 630–637. 10.1016/j.cellbi.2008.01.013 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...