Biotechnological Perspectives of Omics and Genetic Engineering Methods in Alfalfa
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
32508859
PubMed Central
PMC7253590
DOI
10.3389/fpls.2020.00592
Knihovny.cz E-zdroje
- Klíčová slova
- Medicago sativa, alfalfa, genomics, metabolomics, proteomics, stress resistance genes,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
For several decades, researchers are working to develop improved major crops with better adaptability and tolerance to environmental stresses. Forage legumes have been widely spread in the world due to their great ecological and economic values. Abiotic and biotic stresses are main factors limiting legume production, however, alfalfa (Medicago sativa L.) shows relatively high level of tolerance to drought and salt stress. Efforts focused on alfalfa improvements have led to the release of cultivars with new traits of agronomic importance such as high yield, better stress tolerance or forage quality. Alfalfa has very high nutritional value due to its efficient symbiotic association with nitrogen-fixing bacteria, while deep root system can help to prevent soil water loss in dry lands. The use of modern biotechnology tools is challenging in alfalfa since full genome, unlike to its close relative barrel medic (Medicago truncatula Gaertn.), was not released yet. Identification, isolation, and improvement of genes involved in abiotic or biotic stress response significantly contributed to the progress of our understanding how crop plants cope with these environmental challenges. In this review, we provide an overview of the progress that has been made in high-throughput sequencing, characterization of genes for abiotic or biotic stress tolerance, gene editing, as well as proteomic and metabolomics techniques bearing biotechnological potential for alfalfa improvement.
Zobrazit více v PubMed
Abdelrahman M., El-Sayed M., Sato S., Hirakawa H., Ito S. I., Tanaka K., et al. (2017a). RNA-sequencing-based transcriptome and biochemical analyses of steroidal saponin pathway in a complete set of PubMed DOI PMC
Abdelrahman M., Suzumura N., Mitoma M., Matsuo S., Ikeuchi T., Mori M., et al. (2017b). Comparative de novo transcriptome profiles in PubMed DOI PMC
Abdelrahman M., Jogaiah S., Burritt D. J., Tran L. S. P. (2018). Legume genetic resources and transcriptome dynamics under abiotic stress conditions. PubMed DOI
Abdelrahman M., Sawada Y., Nakabayashi R., Sato S., Hirakawa H., El-Sayed M., et al. (2015). Integrating transcriptome and target metabolome variability in doubled haploids of DOI
An Y. M., Song L. L., Liu Y. R., Shu Y. J., Guo C. H. (2016). De novo transcriptional analysis of alfalfa in response to saline-alkaline stress. PubMed DOI PMC
Annicchiarico P., Barrett B., Brummer E. C., Julier B., Marshall A. H. (2015). Achievements and challenges in improving temperate perennial forage legumes. DOI
Annicchiarico P., Nazzicari N., Brummer E. C. (2016). ““Alfalfa genomic selection: challenges, strategies, transnational cooperation“,” in DOI
Aranjuelo I., Molero G., Erice G., Avice J. C., Nogués S. (2011). Plant physiology and proteomics reveals the leaf response to drought in alfalfa ( PubMed DOI PMC
Aranjuelo I., Perez P., Hernandez L., Irigoyen J. J., Zita G., Martinez-Carrasco R., et al. (2005). The response of nodulated alfalfa to water supply, temperature and elevated CO2: photosynthetic downregulation. DOI
Aranjuelo I., Tcherkez G., Molero G., Gilard F., Avice J.-C., Nogués S. (2013). Concerted changes in N and C primary metabolism in alfalfa ( PubMed DOI PMC
Ari S̨, Arikan M. (2016). “Next-generation sequencing: advantages, disadvantages, and future,” in DOI
Arshad M., Feyissa B. A., Amyot L., Aung B., Hannoufa A. (2017). MicroRNA156 improves drought stress tolerance in alfalfa ( PubMed DOI
Arshad M., Gruber M. Y., Hannoufa A. (2018). Transcriptome analysis of microRNA156 overexpression alfalfa roots under drought stress. PubMed DOI PMC
Asamizu E., Nakamura Y., Sato S., Tabata S. (2004). Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis. PubMed DOI
Aung B., Gao R., Gruber M. Y., Yuan Z. C., Sumarah M., Hannoufa A. (2017). MsmiR156 affects global gene expression and promotes root regenerative capacity and nitrogen fixation activity in alfalfa. PubMed DOI
Aung B., Gruber M. Y., Amyot L., Omari K., Bertrand A., Hannoufa A. (2015). Micro RNA 156 as a promising tool for alfalfa improvement. PubMed DOI
Aziz N., Paiva N. L., May G. D., Dixon R. A. (2005). Transcriptome analysis of alfalfa glandular trichomes. PubMed DOI
Bahramnejad B., Goodwin P. H., Zhang J., Atnaseo C., Erickson L. R. (2010). A comparison of two class 10 pathogenesis-related genes from alfalfa and their activation by multiple stresses and stress-related signaling molecules. PubMed DOI
Baldacci-Cresp F., Chang C., Maucourt M., Deborde C., Hopkins J., Lecomte P., et al. (2012). Homoglutathione deficiency impairs root-knot nematode development in PubMed DOI PMC
Bao A., Chen H., Chen L., Chen S., Hao Q., Guo W., et al. (2019). CRISPR/Cas9-mediated targeted mutagenesis of PubMed DOI PMC
Barabaschi D., Guerra D., Lacrima K., Laino P., Michelotti V., Urso S., et al. (2012). Emerging knowledge from genome sequencing of crop species. PubMed DOI
Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. PubMed DOI
Barros J., Temple S., Dixon R. A. (2019). Development and commercialization of reduced lignin alfalfa. PubMed DOI
Bekešová S., Komis G., Křenek P., Vyplelová P., Ovečka M., Luptovčiak I., et al. (2015). Monitoring protein phosphorylation by acrylamide pendant Phos-TagTM in various plants. PubMed DOI PMC
Belhaj K., Chaparro-Garcia A., Kamoun S., Nekrasov V. (2013). Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. PubMed DOI PMC
Bevan M. W., Uauy C., Wulff B. B., Zhou J., Krasileva K., Clark M. D. (2017). Genomic innovation for crop improvement. PubMed DOI
Biazzi E., Nazzicari N., Pecetti L., Brummer E. C., Palmonari A., Tava A., et al. (2017). Genome-wide association mapping and genomic selection for alfalfa ( PubMed DOI PMC
Blondon F., Marie D., Brown S., Kondorosi A. (1994). Genome size and base composition in PubMed DOI
Bohnert H. J., Jensen R. G. (1996). Strategies for engineering water-stress tolerance in plants. DOI
Bora K. S., Sharma A. (2011). Phytochemical and pharmacological potential of PubMed DOI
Borsics T., Lados M. (2002). Dodder infection induces the expression of a pathogenesis-related gene of the family PR-10 in alfalfa. PubMed DOI
Breakspear A., Liu C., Roy S., Stacey N., Rogers C., Trick M., et al. (2014). The root hair “infectome” of PubMed DOI PMC
Brouwer D. J., Osborn T. C. (1999). A molecular marker linkage map of tetraploid alfalfa ( DOI
Brummer E. C., Bouton J. H., Kochert G. (1993). Development of an RFLP map in diploid alfalfa. PubMed DOI
Budak H., Kantar M., Bulut R., Akpinar B. A. (2015). Stress responsive miRNAs and isomiRs in cereals. PubMed DOI
Bustos-Sanmamed P., Mao G., Deng Y., Elouet M., Khan G. A., Bazin J., et al. (2013). Overexpression of miR160 affects root growth and nitrogen-fixing nodule number in PubMed DOI
Cai Y., Chen L., Liu X., Sun S., Wu C., Jiang B., et al. (2015). CRISPR/Cas9-mediated genome editing in soybean hairy roots. PubMed DOI PMC
Cardinale F., Meskiene I., Ouaked F., Hirt H. (2002). Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. PubMed DOI PMC
Carter P. R., Sheaffer C. C. (1983). Alfalfa response to soil water deficits. III. Nodulation and N2 fixation. DOI
Chao Y., Yuan J., Guo T., Xu L., Mu Z., Han L. (2019). Analysis of transcripts and splice isoforms in PubMed DOI
Chen J., Han G., Shang C., Li J., Zhang H., Liu F., et al. (2015). Proteomic analyses reveal differences in cold acclimation mechanisms in freezing-tolerant and freezing-sensitive cultivars of alfalfa. PubMed DOI PMC
Chen K., Wang Y., Zhang R., Zhang H., Gao C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. PubMed DOI
Chen L., Chen Q., Zhu Y., Hou L., Mao P. (2016). Proteomic identification of differentially expressed proteins during alfalfa ( PubMed DOI PMC
Chen T. H., Murata N. (2002). Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. PubMed DOI
Chen T. H., Murata N. (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. PubMed DOI
Cheung F., Haas B. J., Goldberg S. M. D., May G. D., Xiao Y., Town C. D. (2006). Sequencing PubMed DOI PMC
Christian M., Cermak T., Doyle E. L., Schmidt C., Zhang F., Hummel A., et al. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. PubMed DOI PMC
Curtin S. J., Xiong Y., Michno J. M., Campbell B. W., Stec A. O., Čermák T., et al. (2018). CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and PubMed DOI PMC
Dai C., Cui W., Pan J., Xie Y., Wang J., Shen W. (2017). Proteomic analysis provides insights into the molecular bases of hydrogen gas-induced cadmium resistance in PubMed DOI
de Zélicourt A., Diet A., Marion J., Laffont C., Ariel F., Moison M., et al. (2011). Dual involvement of a PubMed DOI
Demorest Z. L., Coffman A., Baltes N. J., Stoddard T. J., Clasen B. M., Luo S., et al. (2016). Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. PubMed DOI PMC
Deokar A. A., Kondawar V., Jain P. K., Karuppayil S. M., Raju N. L., Vadez V., et al. (2011). Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress. PubMed DOI PMC
Diaz-Vivancos P., de Simone A., Kiddle G., Foyer C. H. (2015). Glutathione–linking cell proliferation to oxidative stress. PubMed DOI
Dong L., Liu H., Zhang J., Yang S., Kong G., Chu J. S., et al. (2015). Single-molecule real-time transcript sequencing facilitates common wheat genome annotation and grain transcriptome research. PubMed DOI PMC
Doyle J. J., Luckow M. A. (2003). The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. PubMed DOI PMC
Du H., Shi Y., Li D., Fan W., Wang Y., Wang G., et al. (2018). Proteomics reveals key proteins participating in growth difference between fall dormant and non-dormant alfalfa in terminal buds. PubMed DOI
Du H., Zeng X., Zhao M., Cui X., Wang Q., Yang H., et al. (2016). Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. PubMed DOI
Ebert J. (2007). Alfalfa’s bioenergy appeal.
Echt C. S., Kidwell K. K., Knapp S. J., Osborn T. C., McCoy T. J. (1994). Linkage mapping in diploid alfalfa ( PubMed DOI
Edwards D., Batley J. (2010). Plant genome sequencing: applications for crop improvement. PubMed DOI
Eid J., Fehr A., Gray J., Luong K., Lyle J., Otto G., et al. (2009). Real-time DNA sequencing from single polymerase molecules. PubMed DOI
Elgin J. H., Jr., Ostazeski S. A. (1985). Inheritance of resistance to race 1 and race 2 anthracnose in Arc and Saranac AR alfalfa. DOI
Elgin J. H., Jr., Welty R. E., Gilchrist D. B. (1988). Breeding for disease and nematode resistance. DOI
Esnault R., Buffard D., Breda C., Sallaud C., Turk J., Kondorosi A. (1993). Pathological and molecular characterizations of alfalfa interactions with compatible and incompatible bacteria, Xanthomonas campestris pv. alfalfae and PubMed DOI
Fan W., Ge G., Liu Y., Wang W., Liu L., Jia Y. (2018). Proteomics integrated with metabolomics: analysis of the internal causes of nutrient changes in alfalfa at different growth stages. PubMed DOI PMC
Farooq M., Gogoi N., Hussain M., Barthakur S., Paul S., Bharadwaj N., et al. (2017). Effects, tolerance mechanisms and management of salt stress in grain legumes. PubMed DOI
Feng Z., Zhang B., Ding W., Liu X., Yang D. L., Wei P., et al. (2013). Efficient genome editing in plants using a CRISPR/Cas system. PubMed DOI PMC
Feyissa B. A., Arshad M., Gruber M. Y., Kohalmi S. E., Hannoufa A. (2019). The interplay between miR156/SPL13 and DFR/WD40–1 regulate drought tolerance in alfalfa. PubMed DOI PMC
Flajoulot S., Ronfort J., Baudouin P., Barre P., Huguet T., Huyghe C., et al. (2005). Genetic diversity among alfalfa ( PubMed DOI
Fleming M. B., Patterson E. L., Reeves P. A., Richards C. M., Gaines T. A., Walters C. (2018). Exploring the fate of mRNA in aging seeds: protection, destruction, or slow decay? PubMed DOI PMC
Frendo P., Harrison J., Norman C., Jiménez M. J. H. (2005). Glutathione and homoglutathione play a critical role in the nodulation process of PubMed DOI
Fu G., Grbic V., Ma S., Tian L. (2015). Evaluation of somatic embryos of alfalfa for recombinant protein expression. PubMed DOI
Fukuda A., Nakamura A., Tanaka Y. (1999). Molecular cloning and expression of the Na+/H+ exchanger gene in PubMed DOI
Fürstenberg-Hägg J., Zagrobelny M., Bak S. (2013). Plant defense against insect herbivores. PubMed DOI PMC
Gao R., Feyissa B. A., Croft M., Hannoufa A. (2018). Gene editing by CRISPR/Cas9 in the obligatory outcrossing PubMed DOI
Gao Z., Luo W., Liu H., Zeng C., Liu X., Yi S., et al. (2012). Transcriptome analysis and SSR/SNP markers information of the blunt snout bream ( PubMed DOI PMC
García A. N., Ayub N. D., Fox A. R., Gómez M. C., Diéguez M. J., Pagano E. M., et al. (2014). Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. PubMed DOI PMC
Gong B., Li X., Bloszies S., Wen D., Sun S., Wei M. (2014). Sodic alkaline stress mitigation by interaction of nitric oxide and polyamines involves antioxidants and physiological strategies in PubMed DOI
Graham D. B., Root D. E. (2015). Resources for the design of CRISPR gene editing experiments. PubMed DOI PMC
Gutsch A., Keunen E., Guerriero G., Renaut J., Cuypers A., Hausman J. F., et al. (2018b). Long-term cadmium exposure influences the abundance of proteins that impact the cell wall structure in PubMed DOI PMC
Gutsch A., Zouaghi S., Renaut J., Cuypers A., Hausman J. F., Sergeant K. (2018a). Changes in the proteome of PubMed DOI PMC
Guzman-Rodriguez J. J., Ibarra-Laclette E., Herrera-Estrella L., Ochoa-Zarzosa A., Suarez-Rodriguez L. M., Rodriguez-Zapata L. C., et al. (2013). Analysis of expressed sequence tags (ESTs) from avocado seed ( PubMed DOI
Ha C. V., Watanabe Y., Tran U. T., Le D. T., Tanaka M., Nguyen K. H., et al. (2015). Comparative analysis of root transcriptomes from two contrasting drought-responsive Williams 82 and DT2008 soybean cultivars under normal and dehydration conditions. PubMed DOI PMC
Han Y., Kang Y., Torres-Jerez I., Cheung F., Town C. D., Zhao P. X., et al. (2011). Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis. PubMed DOI PMC
Hartlerode A. J., Scully R. (2009). Mechanisms of double-strand break repair in somatic mammalian cells. PubMed DOI PMC
Haun W., Coffman A., Clasen B. M., Demorest Z. L., Lowy A., Ray E., et al. (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. PubMed DOI
Hawkins C., Yu L. X. (2018). Recent progress in alfalfa ( DOI
He X. Z., Dixon R. A. (2000). Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4’-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. PubMed DOI PMC
Herrmann D., Flajoulot S., Barre P., Huyghe C., Ronfort J., Julier B. (2018). Comparison of morphological traits and molecular markers to analyse diversity and structure of alfalfa ( DOI
Hipskind J. D., Paiva N. L. (2000). Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. PubMed DOI
Huang X., Kurata N., Wang Z. X., Wang A., Zhao Q., Zhao Y., et al. (2012). A map of rice genome variation reveals the origin of cultivated rice. PubMed DOI PMC
Hwang E. Y., Song Q., Jia G., Specht J. E., Hyten D. L., Costa J., et al. (2014). A genome-wide association study of seed protein and oil content in soybean. PubMed DOI PMC
Jacobs T. B., LaFayette P. R., Schmitz R. J., Parrott W. A. (2015). Targeted genome modifications in soybean with CRISPR/Cas9. PubMed DOI PMC
Jaganathan D., Ramasamy K., Sellamuthu G., Jayabalan S., Venkataraman G. (2018). CRISPR for crop improvement: an update review. PubMed DOI PMC
Jain M., Olsen H. E., Paten B., Akeson M. (2016). The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. PubMed DOI PMC
Jin Q., Zhu K., Cui W., Xie Y., Han B., Shen W. (2013). Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system. PubMed DOI
Jin T., Chang Q., Li W., Yin D., Li Z., Wang D., et al. (2010). Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. DOI
Jones J. D. G., Dangl J. L. (2006). The plant immune system. PubMed DOI
Julier B., Flajoulot S., Barre P., Cardinet G., Santoni S., Huguet T., et al. (2003). Construction of two genetic linkage maps in cultivated tetraploid alfalfa ( PubMed DOI PMC
Kanaar R., Hoeijmakers J. H., van Gent D. C. (1998). Molecular mechanisms of DNA double strand break repair. PubMed DOI
Kang P., Bao A. K., Kumar T., Pan Y. Q., Bao Z., Wang F., et al. (2016). Assessment of stress tolerance, productivity, and forage quality in T1 transgenic alfalfa co-overexpressing ZxNHX and ZxVP1-1 from PubMed DOI PMC
Kang Y., Han Y., Torres-Jerez I., Wang M., Tang Y., Monteros M., et al. (2011). System responses to long-term drought and re-watering of two contrasting alfalfa varieties. PubMed DOI
Kang Y., Sakiroglu M., Krom N., Stanton-Geddes J., Wang M., Lee Y. C., et al. (2015). Genome-wide association of drought-related and biomass traits with HapMap SNPs in PubMed DOI
Kersey P. J. (2019). Plant genome sequences: past, present, future. PubMed DOI
Khan Z., Khan S. H., Mubarik M. S., Sadia B., Ahmad A. (2017). Use of TALEs and TALEN technology for genetic improvement of plants. DOI
Khu D. M., Reyno R., Han Y., Zhao P. X., Bouton J. H., Brummer E. C., et al. (2013). Identification of aluminum tolerance quantitative trait loci in tetraploid alfalfa. DOI
Kiegerl S., Cardinale F., Siligan C., Gross A., Baudouin E., Liwosz A., et al. (2000). SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress–induced MAPK, SIMK. PubMed DOI PMC
Kim K. Y., Kwon S. Y., Lee H. S., Hur Y., Bang J. W., Kwak S. S. (2003). A novel oxidative stress-inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. PubMed DOI
Kiss G. B., Csanádi G., Kálmán K., Kaló P., Ökrész L. (1993). Construction of a basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers. PubMed DOI
Klapheck S. (1988). Homoglutathione: isolation, quantification and occurrence in legumes. DOI
Komatsu S., Ahsan N. (2009). Soybean proteomics and its application to functional analysis. PubMed DOI
Komis G., Illés P., Beck M., Šamaj J. (2011). Microtubules and mitogen-activated protein kinase signalling. PubMed DOI
Köpp M., Passos L., Verneue R., Lédo F. J., Coimbra J. L., de Oliveira A. (2011). Effects of nutrient solution pH on growth parameters of alfalfa ( DOI
Korver R. A., Koevoets I. T., Testerink C. (2018). Out of shape during stress: a key role for auxin. PubMed DOI PMC
Kovalskaya N., Hammond R. W. (2009). Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins. PubMed DOI
Kudapa H., Ramalingam A., Nayakoti S., Chen W., Zhuang W., Liang X., et al. (2013). Functional genomics to study stress responses in crop legumes: progress and prospects. PubMed DOI
Kuluev B. R., Gumerova G. R., Mikhaylova E. V., Gerashchenkov G. A., Rozhnova N. A., Vershinina Z. R., et al. (2019). Delivery of CRISPR/Cas components into higher plant cells for genome editing. DOI
Kumar T., Bao A. K., Bao Z., Wang F., Gao L., Wang S. M. (2018). The progress of genetic improvement in alfalfa ( DOI
Laberge S., Castonguay Y., Vézina L. P. (1993). New cold-and drought-regulated gene from PubMed DOI PMC
Lardi M., Pessi G. (2018). Functional genomics approaches to studying symbioses between legumes and nitrogen-fixing rhizobia. PubMed DOI PMC
Le B. H., Wagmaister J. A., Kawashima T., Bui A. Q., Harada J. J., Goldberg R. B. (2007). Using genomics to study legume seed development. PubMed DOI PMC
Le D. T., Nishiyama R., Watanabe Y., Tanaka M., Seki M., Ham L. H., et al. (2012). Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PubMed DOI PMC
Le Nguyen K., Grondin A., Courtois B., Gantet P. (2018). Next-generation sequencing accelerates crop gene discovery. PubMed DOI
Lei Y., Xu Y., Hettenhausen C., Lu C., Shen G., Zhang C., et al. (2018). Comparative analysis of alfalfa ( PubMed DOI PMC
Li H., Wang Z., Ke Q., Ji C. Y., Jeong J. C., Lee H. S., et al. (2014). Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa. PubMed DOI
Li J. F., Norville J. E., Aach J., McCormack M., Zhang D., Bush J., et al. (2013). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. PubMed DOI PMC
Li S., Jia S., Hou L., Nguyen H., Sato S., Holding D., et al. (2019). Mapping of transgenic alleles in soybean using a nanopore-based sequencing strategy. PubMed DOI PMC
Li T., Huang S., Jiang W. Z., Wright D., Spalding M. H., Weeks D. P., et al. (2011). TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. PubMed DOI PMC
Li W., Wei Z., Qiao Z., Wu Z., Cheng L., Wang Y. (2013). Proteomics analysis of alfalfa response to heat stress. PubMed DOI PMC
Li X., Brummer E. C. (2012). Applied genetics and genomics in alfalfa breeding. DOI
Li X., Hannoufa A., Zhang Y., Yu P. (2016). Gene-silencing-induced changes in carbohydrate conformation in relation to bioenergy value and carbohydrate subfractions in modeled plant ( PubMed DOI PMC
Li X., Wei Y., Acharya A., Jiang Q., Kang J., Brummer E. C. (2014). A saturated genetic linkage map of autotetraploid alfalfa ( PubMed DOI PMC
Li Z., Liu Z. B., Xing A., Moon B. P., Koellhoffer J. P., Huang L., et al. (2015). Cas9-guide RNA directed genome editing in soybean. PubMed DOI PMC
Libault M., Pingault L., Zogli P., Schiefelbein J. (2017). Plant systems biology at the single-cell level. PubMed DOI
Liu H., Ding Y., Zhou Y., Jin W., Xie K., Chen L. L. (2017). CRISPR-P 2.0 PubMed DOI
Liu W., Xiong C., Yan L., Zhang Z., Ma L., Wang Y., et al. (2017). Transcriptome analyses reveal candidate genes potentially involved in al stress response in alfalfa. PubMed DOI PMC
Liu X., Wu S., Xu J., Sui C., Wei J. (2019). Application of CRISPR/Cas9 in plant biology. PubMed DOI PMC
Liu X. P., Hawkins C., Peel M. D., Yu L. X. (2019). Genetic loci associated with salt tolerance in advanced breeding populations of tetraploid alfalfa using genome-wide association studies. PubMed DOI
Liu Z., Chen T., Ma L., Zhao Z., Zhao P. X., Nan Z., et al. (2013). Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa. PubMed DOI PMC
Long R., Gao Y., Sun H., Zhang T., Li X., Li M., et al. (2018). Quantitative proteomic analysis using iTRAQ to identify salt-responsive proteins during the germination stage of two Medicago species. PubMed DOI PMC
Long R., Li M., Zhang T., Kang J., Sun Y., Cong L., et al. (2016). Comparative proteomic analysis reveals differential root proteins in PubMed DOI PMC
Lu H., Giordano F., Ning Z. (2016). Oxford Nanopore MinION sequencing and genome assembly. PubMed DOI PMC
Luo D., Wu Y., Liu J., Zhou Q., Liu W., Wang Y., et al. (2019a). Comparative transcriptomic and physiological analyses of PubMed DOI PMC
Luo D., Zhou Q., Wu Y., Chai X., Liu W., Wang Y., et al. (2019b). Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa ( PubMed DOI PMC
Luo M., Lin L., Hill R. D., Mohapatra S. S. (1991). Primary structure of an environmental stress and abscisic acid-inducible alfalfa protein. PubMed DOI
Luo M., Liu J. H., Mohapatra S., Hill R. D., Mohapatra S. S. (1992). Characterization of a gene family encoding abscisic acid-and environmental stress-inducible proteins of alfalfa. PubMed
Ma Q., Kang J., Long R., Zhang T., Xiong J., Zhang K., et al. (2017). Comparative proteomic analysis of alfalfa revealed new salt and drought stress-related factors involved in seed germination. PubMed DOI
Mackie J. M., Musial J. M., Armour D. J., Phan H. T. T., Ellwood S. E. (2007). Identification of QTL for reaction to three races of PubMed DOI
Macovei A., Gill S. S., Tuteja N. (2012). microRNAs as promising tools for improving stress tolerance in rice. PubMed DOI PMC
Mahfouz M. M., Li L., Shamimuzzaman M., Wibowo A., Fang X., Zhu J. K. (2011). De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. PubMed DOI PMC
Makarova K. S., Zhang F., Koonin E. V. (2017). SnapShot: Class 2 CRISPR-Cas systems. PubMed DOI
Malzahn A., Lowder L., Qil Y. (2017). Plant genome editing with TALEN and CRISPR. PubMed DOI PMC
Mao Y. F., Botella J. R., Liu Y. G., Zhu J. K. (2019). Gene editing in plants: progress and challenges. PubMed DOI PMC
Margulies M., Egholm M., Altman W. E., Attiya S., Bader J. S., Bemben L. A., et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. PubMed DOI PMC
Marraffini L. A., Sontheimer E. J. (2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. PubMed DOI PMC
Masonbrink R. E., Severin A. J., Seetharam A. S. (2017). “Comparative genomics of soybean and other legumes,” in DOI
Masoud S. A., Zhu Q., Lamb C., Dixon R. A. (1996). Constitutive expression of an inducible β-1,3-glucanase in alfalfa reduces disease severity caused by the oomycete pathogen DOI
Matamoros M. A., Moran J. F., Iturbe-Ormaetxe I., Rubio M. C., Becana M. (1999). Glutathione and homoglutathione synthesis in legume root nodules. PubMed DOI PMC
Matthews C., Arshad M., Hannoufa A. (2019). Alfalfa response to heat stress is modulated by microRNA156. PubMed DOI
McCoy T. J., Bingham E. T. (1988). “Cytology and cytogenetics of alfalfa,” in
Meng Y., Wang C., Yin P., Zhu B., Zhang P., Niu L., et al. (2019). “Targeted mutagenesis by an optimized agrobacterium-delivered CRISPR/Cas 9 system in the model legume DOI
Meng Y. Y., Hou Y. L., Wang H., Ji R. H., Liu B., Wen J. Q., et al. (2017). Targeted mutagenesis by CRISPR/Cas9 system in the model legume PubMed DOI
Michno J. M., Wang X., Liu J., Curtin S. J., Kono T. J., Stupar R. M. (2015). CRISPR/Cas mutagenesis of soybean and PubMed DOI PMC
Miller J. C., Tan S., Qiao G., Barlow K. A., Wang J., Xia D. F., et al. (2011). A TALE nuclease architecture for efficient genome editing. PubMed DOI
Mittler R., Blumwald E. (2015). The roles of ROS and ABA in systemic acquired acclimation. PubMed DOI PMC
Mo Y., Liang G., Shi W., Xie J. (2011). Metabolic responses of alfalfa ( DOI
Moradpour M., Abdulah S. N. A. (2020). CRISPR/dCas9 platforms in plants: strategies and applications beyond genome editing. PubMed DOI PMC
Musial J. M., Mackie J. M., Armour D. J., Phan H. T. T., Ellwood S. E., Aitken K. S., et al. (2007). Identification of QTL for resistance and susceptibility to PubMed DOI
Nakano K., Shiroma A., Shimoji M., Tamotsu H., Ashimine N., Ohki S., et al. (2017). Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area. PubMed DOI PMC
Nekrasov V., Staskawicz B., Weigel D., Jones J. D., Kamoun S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. PubMed DOI
Nekrasov V., Wang C. M., Win J. (2017). Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. PubMed DOI PMC
Ninković S., Miljuš-Ðukić J., Nešković M. (1995). Genetic transformation of alfalfa somatic embryos and their clonal propagation through repetitive somatic embryogenesis. DOI
Nirola R., Megharaj M., Beecham S., Aryal R., Thavamani P., Vankateswarlu K., et al. (2016). Remediation of metalliferous mines, revegetation challenges and emerging prospects in semi-arid and arid conditions. PubMed DOI
Nutter F. W., Guan J., Gotlieb A. R., Rhodes L. H., Grau C. R., Sulc R. M. (2002). Quantifying alfalfa yield losses caused by foliar diseases in Iowa, Ohio, Wisconsin, and Vermont. PubMed DOI
Olukolu B. A., Tracy W. F., Wisser R., De Vries B., Balint-Kurti P. J. (2016). A genome-wide association study for partial resistance to maize common rust. PubMed DOI
O’Rourke J. A., Fu F., Bucciarelli B., Yang S. S., Samac D. A., Lamb J. F. S., et al. (2015). The PubMed DOI PMC
Ovečka M., Takáč T., Komis G., Vadovič P., Bekešová S., Doskočilová A., et al. (2014). Salt-induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in PubMed DOI PMC
Paparella S., Araújo S. S., Rossi G., Wijayasinghe M., Carbonera D., Balestrazzi A. (2015). Seed priming: state of the art and new perspectives. PubMed DOI
Pâques F., Duchateau P. (2007). Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. PubMed DOI
Pasternak T., Asard H., Potters G., Jansen M. A. (2014). The thiol compounds glutathione and homoglutathione differentially affect cell development in alfalfa ( PubMed DOI
Pastwa E., Blasiak J. (2003). Non-homologous DNA end joining. PubMed DOI
Paszkowski J., Baur M., Bogucki A., Potrykus I. (1988). Gene targeting in plants. PubMed DOI PMC
Pavlovich M. (2017). Computing in biotechnology: omics and beyond. PubMed DOI
Pennycooke J. C., Cheng H., Stockinger E. J. (2008). Comparative genomic sequence and expression analyses of PubMed PMC
Piano E., Pecetti L. (2010). “Minor legume species,” in DOI
Postnikova O. A., Hult M., Shao J., Skantar A., Nemchinov L. G. (2015). Transcriptome analysis of resistant and susceptible alfalfa cultivars infected with root-knot nematode Meloidogyne incognita. PubMed DOI PMC
Postnikova O. A., Shao J., Nemchinov L. G. (2013). Analysis of the alfalfa root transcriptome in response to salinity stress. PubMed DOI
Pratt R. G., Rowe D. E. (2002). Enhanced resistance to PubMed DOI
Printz B., Guerriero G., Sergeant K., Audinot J. N., Guignard C., Renaut J., et al. (2016). Combining-omics to unravel the impact of copper nutrition on alfalfa ( PubMed DOI PMC
Printz B., Guerriero G., Sergeant K., Renaut J., Lutts S., Hausman J. F. (2015). Ups and downs in alfalfa: proteomic and metabolic changes occurring in the growing stem. PubMed DOI
Puchta H., Dujon B., Hohn B. (1993). Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. PubMed DOI PMC
Qi Y. (2015). “High efficient genome modification by designed zinc finger nuclease,” in DOI
Radović J., Sokolović D., Marković J. (2009). Alfalfa-most important perennial forage legume in animal husbandry. DOI
Rahman M. A., Alam I., Kim Y. G., Ahn N. Y., Heo S. H., Lee D. G., et al. (2015). Screening for salt-responsive proteins in two contrasting alfalfa cultivars using a comparative proteome approach. PubMed DOI
Rahman M. A., Yong-Goo K., Iftekhar A., Liu G., Hyoshin L., Joo L. J., et al. (2016). Proteome analysis of alfalfa roots in response to water deficit stress. DOI
Rashmi R., Sarkar M., Vikramaditya T. (1997). Cultivaton of alfalfa ( PubMed PMC
Rhodes D., Hanson A. D. (1993). Quaternary ammonium and tertiary sulfonium compounds in higher plants. DOI
Robins J. G., Luth D., Campbell T. A., Bauchan G. R., He C., Viands D. R., et al. (2007). Genetic mapping of biomass production in tetraploid alfalfa. DOI
Rothberg J. M., Hinz W., Rearick T. M., Schultz J., Mileski W., Davey M., et al. (2011). An integrated semiconductor device enabling non-optical genome sequencing. PubMed DOI
Roumen E. C. (1994). “A strategy for accumulating genes for partial resistance to blast disease in rice within a conventional breeding program,” in
Rubiales D., Fondevilla S., Chen W., Gentzbittel L., Higgins T. J. V., Castillejo M. A., et al. (2015). Achievements and challenges in legume breeding for pest and disease resistance. DOI
Sakiroglu M., Brummer E. C. (2017). Identification of loci controlling forage yield and nutritive value in diploid alfalfa using GBS-GWAS. PubMed DOI
Samac D., Smigocki A. (2003). Expression of oryzacystatin I and II in alfalfa increases resistance to the root-lesion nematode. PubMed DOI
Samac D. A., Temple S. J. (2004). “Development and utilization of transformation in Medicago species,” in
Šamaj J., Ovečka M., Hlavačka A., Lecourieux F., Meskiene I., Lichtscheidl I., et al. (2002). Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. PubMed DOI PMC
Šamajová O., Komis G., Šamaj J. (2013a). Emerging topics in the cell biology of mitogen-activated protein kinases. PubMed DOI
Šamajová O., Plíhal O., Al-Yousif M., Hirt H., Šamaj J. (2013b). Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. PubMed DOI
Sander J. D., Dahlborg E. J., Goodwin M. J., Cade L., Zhang F., Cifuentes D., et al. (2011). Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). PubMed DOI PMC
Sato S., Nakamura Y., Kaneko T., Asamizu E., Kato T., Nakao M., et al. (2008). Genome structure of the legume, PubMed DOI PMC
Scheben A., Verpaalen B., Lawley C. T., Chan C. K. K., Bayer P. E., Batley J., et al. (2019). CropSNPdb: a database of SNP array data for Brassica crops and hexaploid bread wheat. PubMed DOI
Schena M., Shalon D., Davis R. W., Brown P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. PubMed DOI
Schiml S., Puchta H. (2016). Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. PubMed DOI PMC
Schmutz J., Cannon S. B., Schlueter J., Ma J., Mitros T., Nelson W., et al. (2010). Genome sequence of the palaeopolyploid soybean. PubMed DOI
Schreiber M., Stein N., Mascher M. (2018). Genomic approaches for studying crop evolution. PubMed DOI PMC
Segura A., Moreno M., Madueno F., Molina A., Garcia-Olmedo F. (1999). Snakin-1, a peptide from potato that is active against plant pathogens. PubMed DOI
Severin A. J., Cannon S. B., Graham M. M., Grant D., Shoemaker R. C. (2011). Changes in twelve homoeologous genomic regions in soybean following three rounds of polyploidy. PubMed DOI PMC
Shafique A., Rehman A., Khan A., Kazi A. G. (2014). “Chapter 1 - Improvement of legume crop production under environmental stresses through biotechnological intervention,” in DOI
Shan Q., Wang Y., Li J., Zhang Y., Chen K., Liang Z., et al. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. PubMed DOI
Shan S., Soltis P. S., Soltis D. E., Yang B. (2020). Considerations in adapting CRISPR/Cas9 in nongenetic model plant systems. PubMed DOI PMC
Singer S. D., Hannoufa A., Acharya S. (2018). Molecular improvement of alfalfa for enhanced productivity and adaptability in a changing environment. PubMed DOI
Smith J., Grizot S., Arnould S., Duclert A., Epinat J. C., Chames P., et al. (2006). A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. PubMed DOI PMC
Song L., Jiang L., Chen Y., Shu Y., Bai Y., Guo C. (2016). Deep-sequencing transcriptome analysis of field-grown PubMed DOI
Stefanova G., Slavov S., Gecheff K., Vlahova M., Atanassov A. (2013). Expression of recombinant human lactoferrin in transgenic alfalfa plants. DOI
Steinert J., Schiml S., Puchta H. (2016). Homology-based double-strand break-induced genome engineering in plants. PubMed DOI
Strizhov N., Keller M., Mathur J., Koncz-Kálmán Z., Bosch D., Prudovsky E., et al. (1996). A synthetic PubMed DOI PMC
Stritzler M., Elba P., Berini C., Gomez C., Ayub N., Soto G. (2018). High-quality forage production under salinity by using a salt-tolerant AtNXH1-expressing transgenic alfalfa combined with a natural stress-resistant nitrogen-fixing bacterium. PubMed DOI
Sun X., Hu Z., Chen R., Jiang Q., Song G., Zhang H., et al. (2015). Targeted mutagenesis in soybean using the CRISPR-Cas9 system. PubMed DOI PMC
Tang F., Yang S., Liu J., Zhu H. (2016). Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported. PubMed DOI PMC
Tang H., Krishnakumar V., Bidwell S., Rosen B., Chan A., Zhou S., et al. (2014). An improved genome release (version Mt4. 0) for the model legume PubMed DOI PMC
Tang X., Liu G. Q., Zhou J. P., Ren Q., You Q., Tian L., et al. (2018). A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. PubMed DOI PMC
Tesfaye M., Denton M. D., Samac D. A., Vance C. P. (2005). Transgenic alfalfa secretes a fungal endochitinase protein to the rhizosphere. DOI
Tesfaye M., Liu J., Vance C. P. (2007). Genomic and genetic control of phosphate stress in legumes. PubMed DOI PMC
Toth E., Bakheit B. R. (1983). Results of resistance breeding in alfalfa. II. Resistance to Verticillium wilt.
Triboi E., Triboi-Blondel A. M. (2014). “Towards sustainable, self-supporting agriculture: biological nitrogen factories as a key for future cropping systems,” in DOI
Tripathi P., Rabara R. C., Reese R. N., Miller M. A., Rohila J. S., Subramanian S., et al. (2016). A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes. PubMed DOI PMC
Tu X., Liu Z., Zhang Z. (2018a). Comparative transcriptomic analysis of resistant and susceptible alfalfa cultivars ( PubMed DOI PMC
Tu X., Zhao H., Zhang Z. (2018b). Transcriptome approach to understand the potential mechanisms of resistant and susceptible alfalfa ( DOI
Valliyodan B., Ye H., Song L., Murphy M., Shannon J. G., Nguyen H. T. (2017). Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. PubMed DOI
Van K., Rastogi K., Kim K. H., Lee S. H. (2013). Next-generation sequencing technology for crop improvement. DOI
Varshney R. K., Kudapa H. (2013). Legume biology: the basis for crop improvement. PubMed DOI
Volkov V., Wang B., Dominy P. J., Fricke W., Amtmann A. (2004). Thellungiella halophila, a salt-tolerant relative of DOI
Walter M. H., Liu J. W., Wünn J., Hess D. (1996). Bean ribonuclease-like pathogenesis-related protein genes Ypr10 display complex patterns of developmental, dark-induced and exogenous-stimulus-dependent expression. PubMed DOI
Wang K., Wang Z., Li F., Ye W., Wang J. (2012). The draft genome of a diploid cotton PubMed DOI
Wang L., Rubio M. C., Xin X., Zhang B., Fan Q., Wang Q., et al. (2019). CRISPR/Cas9 knockout of leghemoglobin genes in PubMed DOI
Wang L., Sun S., Wu T., Liu L., Sun X., Cai Y., et al. (2020). Natural variation and CRISPR/Cas9-mediated mutation in PubMed DOI PMC
Wang L., Wang L., Tan Q., Fan Q., Zhu H., Hong Z., et al. (2016). Efficient inactivation of symbiotic nitrogen fixation related genes in PubMed DOI PMC
Wang Z., Gerstein M., Snyder M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. PubMed DOI PMC
Wang Z., Li H., Ke Q., Jeong J. C., Lee H. S., Xu B., et al. (2014). Transgenic alfalfa plants expressing AtNDPK2 exhibit increased growth and tolerance to abiotic stresses. PubMed DOI
Watson B. S., Bedair M. F., Urbanczyk-Wochniak E., Huhman D. V., Yang D. S., Allen S. N., et al. (2015). Integrated metabolomics and transcriptomics reveal enhanced specialized metabolism in PubMed DOI PMC
Wen L., Chen Y., Schnabel E., Crook A., Frugoli J. (2019). Comparison of efficiency and time to regeneration of Agrobacterium-mediated transformation methods in PubMed DOI PMC
Wiedenheft B., Sternberg S. H., Doudna J. A. (2012). RNA-guided genetic silencing systems in bacteria and archaea. PubMed DOI
Wong C. E., Li Y., Moffatt B. A. (2006). Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in PubMed DOI PMC
Wright D. A., Townsend J. A., Winfrey R. J., Jr., Irwin P. A., Rajagopal J. (2005). High-frequency homologous recombination in plants mediated by zinc-finger nucleases. PubMed DOI
Xia T., Apse M. P., Aharon G. S., Blumwald E. (2002). Identification and characterization of a NaCl-inducible vacuolar Na+/H+ antiporter in PubMed DOI
Xie X., Ma X., Zhu Q., Zeng D., Li G., Liu Y. G. (2017). CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. PubMed DOI
Xiong L., Lee H., Ishitani M., Zhu J. K. (2002). Regulation of osmotic stress-responsive gene expression by theLOS6/ABA1 locus in PubMed DOI
Xu B., Wang Y., Zhang S., Guo Q., Jin Y., Chen J., et al. (2017). Transcriptomic and physiological analyses of PubMed DOI PMC
Yacoubi R., Job C., Belghazi M., Chaibi W., Job D. (2011). Toward characterizing seed vigor in alfalfa through proteomic analysis of germination and priming. PubMed DOI
Yacoubi R., Job C., Belghazi M., Chaibi W., Job D. (2013). Proteomic analysis of the enhancement of seed vigour in osmoprimed alfalfa seeds germinated under salinity stress. DOI
Yang S., Gao M., Xu C., Gao J., Deshpande S., Lin S., et al. (2008). Alfalfa benefits from PubMed DOI PMC
Yang S. S., Tu Z. J., Cheung F., Xu W. W., Lamb J. F., Jung H. J. G., et al. (2011). Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems. PubMed DOI PMC
Yang S. S., Xu W. W., Tesfaye M., Lamb J. F., Jung H. J. G., VandenBosch K. A., et al. (2010). Transcript profiling of two alfalfa genotypes with contrasting cell wall composition in stems using a cross-species platform: optimizing analysis by masking biased probes. PubMed DOI PMC
Yin P., Ma Q., Wang H., Feng D., Wang X., Pei Y., et al. (2020). SMALL Leaf and BUSHY1 controls organ size and lateral branching by modulating the stability of BIG SEEDS1 in PubMed DOI PMC
Young N. D., Debellé F., Oldroyd G. E., Geurts R., Cannon S. B., Udvardi M. K., et al. (2011). The medicago genome provides insight into the evolution of rhizobial symbioses. PubMed DOI PMC
Yu L. X., Liu X., Boge W., Liu X. P. (2016). Genome-wide association study identifies loci for salt tolerance during germination in autotetraploid alfalfa ( PubMed DOI PMC
Yu L. X., Zheng P., Zhang T., Rodringuez J., Main D. (2017). Genotyping-by-sequencing-based genome-wide association studies on PubMed DOI PMC
Zeng N., Yang Z., Zhang Z., Hu L., Chen L. (2019). Comparative transcriptome combined with proteome analyses revealed key factors involved in alfalfa ( PubMed DOI PMC
Zhang C., Shi S. (2018). Physiological and proteomic responses of contrasting alfalfa ( PubMed DOI PMC
Zhang H., Zhang J., Wei P. (2014). The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. PubMed DOI
Zhang J. (2004).
Zhang L. Q., Niu Y. D., Huridu H., Hao J. F., Qi Z., Hasi A. (2014). Salicornia europaea L. Na+/H+ antiporter gene improves salt tolerance in transgenic alfalfa ( PubMed DOI
Zhang S., Shi Y., Cheng N., Du H., Fan W., Wang C. (2015). PubMed DOI PMC
Zhang T., Yu L. X., Zheng P., Li Y., Rivera M., Main D., et al. (2015). Identification of loci associated with drought resistance traits in heterozygous autotetraploid alfalfa ( PubMed DOI PMC
Zhang Y. M., Liu Z. H., Wen Z. Y., Zhang H. M., Yang F., Guo X. L. (2012). The vacuolar Na+- H+ antiport gene TaNHX2 confers salt tolerance on transgenic alfalfa ( PubMed DOI
Zhao B., Liang R., Ge L., Li W., Xiao H., Lin H., et al. (2007). Identification of drought-induced microRNAs in rice. PubMed DOI
Zhou C., Han L., Pislariu C., Nakashima J., Fu C., Jiang Q., et al. (2011). From model to crop: functional analysis of a STAY-GREEN gene in the model legume PubMed DOI PMC
Zhou M., Luo H. (2013). MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. PubMed DOI
Zhu J. K. (2001). Plant salt tolerance. PubMed DOI
Zhu J. K. (2002). Salt and drought stress signal transduction in plants. PubMed DOI PMC
Zipfel C. (2014). Plant pattern-recognition receptors. PubMed DOI