Biotechnological Perspectives of Omics and Genetic Engineering Methods in Alfalfa
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
32508859
PubMed Central
PMC7253590
DOI
10.3389/fpls.2020.00592
Knihovny.cz E-zdroje
- Klíčová slova
- Medicago sativa, alfalfa, genomics, metabolomics, proteomics, stress resistance genes,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
For several decades, researchers are working to develop improved major crops with better adaptability and tolerance to environmental stresses. Forage legumes have been widely spread in the world due to their great ecological and economic values. Abiotic and biotic stresses are main factors limiting legume production, however, alfalfa (Medicago sativa L.) shows relatively high level of tolerance to drought and salt stress. Efforts focused on alfalfa improvements have led to the release of cultivars with new traits of agronomic importance such as high yield, better stress tolerance or forage quality. Alfalfa has very high nutritional value due to its efficient symbiotic association with nitrogen-fixing bacteria, while deep root system can help to prevent soil water loss in dry lands. The use of modern biotechnology tools is challenging in alfalfa since full genome, unlike to its close relative barrel medic (Medicago truncatula Gaertn.), was not released yet. Identification, isolation, and improvement of genes involved in abiotic or biotic stress response significantly contributed to the progress of our understanding how crop plants cope with these environmental challenges. In this review, we provide an overview of the progress that has been made in high-throughput sequencing, characterization of genes for abiotic or biotic stress tolerance, gene editing, as well as proteomic and metabolomics techniques bearing biotechnological potential for alfalfa improvement.
Zobrazit více v PubMed
Abdelrahman M., El-Sayed M., Sato S., Hirakawa H., Ito S. I., Tanaka K., et al. (2017a). RNA-sequencing-based transcriptome and biochemical analyses of steroidal saponin pathway in a complete set of Allium fistulosum-A. cepa monosomic addition lines. PLoS One 12:e0181784 10.1371/journal.pone.0181784 PubMed DOI PMC
Abdelrahman M., Suzumura N., Mitoma M., Matsuo S., Ikeuchi T., Mori M., et al. (2017b). Comparative de novo transcriptome profiles in Asparagus officinalis and A. kiusianus during the early stage of Phomopsis asparagi infection. Sci. Rep. 7:2608 10.1038/s41598-017-02566-7 PubMed DOI PMC
Abdelrahman M., Jogaiah S., Burritt D. J., Tran L. S. P. (2018). Legume genetic resources and transcriptome dynamics under abiotic stress conditions. Plant Cell Environ. 41 1972–1983. 10.1111/pce.13123 PubMed DOI
Abdelrahman M., Sawada Y., Nakabayashi R., Sato S., Hirakawa H., El-Sayed M., et al. (2015). Integrating transcriptome and target metabolome variability in doubled haploids of Allium cepa for abiotic stress protection. Mol. Breed. 35:195 10.1007/s11032-015-0378-2 DOI
An Y. M., Song L. L., Liu Y. R., Shu Y. J., Guo C. H. (2016). De novo transcriptional analysis of alfalfa in response to saline-alkaline stress. Front. Plant Sci. 7:931 10.3389/fpls.2016.00931 PubMed DOI PMC
Annicchiarico P., Barrett B., Brummer E. C., Julier B., Marshall A. H. (2015). Achievements and challenges in improving temperate perennial forage legumes. Crit. Rev. Plant Sci. 34 327–380. 10.1080/07352689.2014.898462 DOI
Annicchiarico P., Nazzicari N., Brummer E. C. (2016). ““Alfalfa genomic selection: challenges, strategies, transnational cooperation“,” in Breeding in a World of Scarcity, eds Roldán-Ruiz I., Baert J., Reheul D. (Cham: Springer; ), 145–149. 10.1007/978-3-319-28932-8_22 DOI
Aranjuelo I., Molero G., Erice G., Avice J. C., Nogués S. (2011). Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). J. Exp. Bot. 62 111–123. 10.1093/jxb/erq249 PubMed DOI PMC
Aranjuelo I., Perez P., Hernandez L., Irigoyen J. J., Zita G., Martinez-Carrasco R., et al. (2005). The response of nodulated alfalfa to water supply, temperature and elevated CO2: photosynthetic downregulation. Physiol. Plant. 123 348–358. 10.1111/j.1399-3054.2005.00459.x DOI
Aranjuelo I., Tcherkez G., Molero G., Gilard F., Avice J.-C., Nogués S. (2013). Concerted changes in N and C primary metabolism in alfalfa (Medicago sativa) under water restriction. J. Exp. Bot. 64 885–897. 10.1093/jxb/ers367 PubMed DOI PMC
Ari S̨, Arikan M. (2016). “Next-generation sequencing: advantages, disadvantages, and future,” in Plant Omics: Trends and Applications, eds Hakeem K., Tombuloglu H., Tombuloglu G. (Cham: Springer; ), 109–135. 10.1007/978-3-319-31703-8_5 DOI
Arshad M., Feyissa B. A., Amyot L., Aung B., Hannoufa A. (2017). MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Sci. 258 122–136. 10.1016/j.plantsci.2017.01.018 PubMed DOI
Arshad M., Gruber M. Y., Hannoufa A. (2018). Transcriptome analysis of microRNA156 overexpression alfalfa roots under drought stress. Sci. Rep. 8:9363 10.1038/s41598-018-27088-8 PubMed DOI PMC
Asamizu E., Nakamura Y., Sato S., Tabata S. (2004). Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis. Plant Mol. Biol. 54 405–414. 10.1023/B:PLAN.0000036372.46942.b8 PubMed DOI
Aung B., Gao R., Gruber M. Y., Yuan Z. C., Sumarah M., Hannoufa A. (2017). MsmiR156 affects global gene expression and promotes root regenerative capacity and nitrogen fixation activity in alfalfa. Transgenic Res. 26 541–557. 10.1007/s11248-017-0024-3 PubMed DOI
Aung B., Gruber M. Y., Amyot L., Omari K., Bertrand A., Hannoufa A. (2015). Micro RNA 156 as a promising tool for alfalfa improvement. Plant Biotechnol. J. 13 779–790. 10.1111/pbi.12308 PubMed DOI
Aziz N., Paiva N. L., May G. D., Dixon R. A. (2005). Transcriptome analysis of alfalfa glandular trichomes. Planta 221 28–38. 10.1007/s00425-004-1424-1 PubMed DOI
Bahramnejad B., Goodwin P. H., Zhang J., Atnaseo C., Erickson L. R. (2010). A comparison of two class 10 pathogenesis-related genes from alfalfa and their activation by multiple stresses and stress-related signaling molecules. Plant Cell Rep. 29 1235–1250. 10.1007/s00299-010-0909-6 PubMed DOI
Baldacci-Cresp F., Chang C., Maucourt M., Deborde C., Hopkins J., Lecomte P., et al. (2012). Homoglutathione deficiency impairs root-knot nematode development in Medicago truncatula. PLoS Pathog. 8:2471 10.1371/journal.ppat.1002471 PubMed DOI PMC
Bao A., Chen H., Chen L., Chen S., Hao Q., Guo W., et al. (2019). CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol. 19:131 10.1186/s12870-019-1746-6 PubMed DOI PMC
Barabaschi D., Guerra D., Lacrima K., Laino P., Michelotti V., Urso S., et al. (2012). Emerging knowledge from genome sequencing of crop species. Mol. Biotech. 50 250–266. 10.1007/s12033-011-9443-1 PubMed DOI
Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315 1709–1712. 10.1126/science.1138140 PubMed DOI
Barros J., Temple S., Dixon R. A. (2019). Development and commercialization of reduced lignin alfalfa. Curr. Opin. Biotech. 56 48–54. 10.1016/j.copbio.2018.09.003 PubMed DOI
Bekešová S., Komis G., Křenek P., Vyplelová P., Ovečka M., Luptovčiak I., et al. (2015). Monitoring protein phosphorylation by acrylamide pendant Phos-TagTM in various plants. Front. Plant Sci. 6:336 10.3389/fpls.2015.00336 PubMed DOI PMC
Belhaj K., Chaparro-Garcia A., Kamoun S., Nekrasov V. (2013). Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39 10.1186/1746-4811-9-39 PubMed DOI PMC
Bevan M. W., Uauy C., Wulff B. B., Zhou J., Krasileva K., Clark M. D. (2017). Genomic innovation for crop improvement. Nature 543 346–354. 10.1038/nature22011 PubMed DOI
Biazzi E., Nazzicari N., Pecetti L., Brummer E. C., Palmonari A., Tava A., et al. (2017). Genome-wide association mapping and genomic selection for alfalfa (Medicago sativa) forage quality traits. PLoS One 12:e0169234 10.1371/journal.pone.0169234 PubMed DOI PMC
Blondon F., Marie D., Brown S., Kondorosi A. (1994). Genome size and base composition in Medicago sativa and M. truncatula species. Genome 37 264–270. 10.1139/g94-037 PubMed DOI
Bohnert H. J., Jensen R. G. (1996). Strategies for engineering water-stress tolerance in plants. Trends Biotechnol. 14 89–97. 10.1016/0167-7799(96)80929-2 DOI
Bora K. S., Sharma A. (2011). Phytochemical and pharmacological potential of Medicago sativa: a review. Pharm. Biol. 49 211–220. 10.3109/13880209.2010.504732 PubMed DOI
Borsics T., Lados M. (2002). Dodder infection induces the expression of a pathogenesis-related gene of the family PR-10 in alfalfa. J. Exp. Bot. 53 1831–1832. 10.1093/jxb/erf039 PubMed DOI
Breakspear A., Liu C., Roy S., Stacey N., Rogers C., Trick M., et al. (2014). The root hair “infectome” of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. Plant Cell 26 4680–4701. 10.1105/tpc.114.133496 PubMed DOI PMC
Brouwer D. J., Osborn T. C. (1999). A molecular marker linkage map of tetraploid alfalfa (Medicago sativa L.). Theor. Appl. Gen. 99 1194–1200. 10.1007/s001220051324 DOI
Brummer E. C., Bouton J. H., Kochert G. (1993). Development of an RFLP map in diploid alfalfa. Theor. Appl. Gen. 86 329–332. 10.1007/BF00222097 PubMed DOI
Budak H., Kantar M., Bulut R., Akpinar B. A. (2015). Stress responsive miRNAs and isomiRs in cereals. Plant Sci. 235 1–13. 10.1016/j.plantsci.2015.02.008 PubMed DOI
Bustos-Sanmamed P., Mao G., Deng Y., Elouet M., Khan G. A., Bazin J., et al. (2013). Overexpression of miR160 affects root growth and nitrogen-fixing nodule number in Medicago truncatula. Funct. Plant Biol. 40 1208–1220. 10.1071/FP13123 PubMed DOI
Cai Y., Chen L., Liu X., Sun S., Wu C., Jiang B., et al. (2015). CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One 10:e0136064 10.1371/journal.pone.0136064 PubMed DOI PMC
Cardinale F., Meskiene I., Ouaked F., Hirt H. (2002). Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell 14 703–711. 10.1105/tpc.010256 PubMed DOI PMC
Carter P. R., Sheaffer C. C. (1983). Alfalfa response to soil water deficits. III. Nodulation and N2 fixation. Crop Sci. 23 985–990. 10.2135/cropsci1983.0011183X002300050041x DOI
Chao Y., Yuan J., Guo T., Xu L., Mu Z., Han L. (2019). Analysis of transcripts and splice isoforms in Medicago sativa L. by single-molecule long-read sequencing. Plant Mol. Biol. 99 219–235. 10.1007/s11103-018-0813-y PubMed DOI
Chen J., Han G., Shang C., Li J., Zhang H., Liu F., et al. (2015). Proteomic analyses reveal differences in cold acclimation mechanisms in freezing-tolerant and freezing-sensitive cultivars of alfalfa. Front. Plant Sci. 6:105 10.3389/fpls.2015.00105 PubMed DOI PMC
Chen K., Wang Y., Zhang R., Zhang H., Gao C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70 667–697. 10.1146/annurev-arplant-050718-100049 PubMed DOI
Chen L., Chen Q., Zhu Y., Hou L., Mao P. (2016). Proteomic identification of differentially expressed proteins during alfalfa (Medicago sativa L.) flower development. Front. Plant Sci. 7:1502 10.3389/fpls.2016.01502 PubMed DOI PMC
Chen T. H., Murata N. (2002). Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr. Opin. Plant Biol. 5 250–257. 10.1016/s1369-5266(02)00255-8 PubMed DOI
Chen T. H., Murata N. (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci. 13 499–505. 10.1016/j.tplants.2008.06.007 PubMed DOI
Cheung F., Haas B. J., Goldberg S. M. D., May G. D., Xiao Y., Town C. D. (2006). Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. BMC Genom. 7:272 10.1186/1471-2164-7-272 PubMed DOI PMC
Christian M., Cermak T., Doyle E. L., Schmidt C., Zhang F., Hummel A., et al. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186 757–761. 10.1534/genetics.110.120717 PubMed DOI PMC
Curtin S. J., Xiong Y., Michno J. M., Campbell B. W., Stec A. O., Čermák T., et al. (2018). CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula. Plant Biotech. J. 16 1125–1137. 10.1111/pbi.12857 PubMed DOI PMC
Dai C., Cui W., Pan J., Xie Y., Wang J., Shen W. (2017). Proteomic analysis provides insights into the molecular bases of hydrogen gas-induced cadmium resistance in Medicago sativa. J. Proteom. 152 109–120. 10.1016/j.jprot.2016.10.013 PubMed DOI
de Zélicourt A., Diet A., Marion J., Laffont C., Ariel F., Moison M., et al. (2011). Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence. Plant J. 70 220–230. 10.1111/j.1365-313X.2011.04859.x PubMed DOI
Demorest Z. L., Coffman A., Baltes N. J., Stoddard T. J., Clasen B. M., Luo S., et al. (2016). Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol. 16:225 10.1186/s12870-016-0906-1 PubMed DOI PMC
Deokar A. A., Kondawar V., Jain P. K., Karuppayil S. M., Raju N. L., Vadez V., et al. (2011). Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biol. 11:70 10.1186/1471-2229-11-70 PubMed DOI PMC
Diaz-Vivancos P., de Simone A., Kiddle G., Foyer C. H. (2015). Glutathione–linking cell proliferation to oxidative stress. Free Radical Biol. Med. 89 1154–1164. 10.1016/j.freeradbiomed.2015.09.023 PubMed DOI
Dong L., Liu H., Zhang J., Yang S., Kong G., Chu J. S., et al. (2015). Single-molecule real-time transcript sequencing facilitates common wheat genome annotation and grain transcriptome research. BMC Genom. 16:1039 10.1186/s12864-015-2257-y PubMed DOI PMC
Doyle J. J., Luckow M. A. (2003). The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol. 131 900–910. 10.1104/pp.102.018150 PubMed DOI PMC
Du H., Shi Y., Li D., Fan W., Wang Y., Wang G., et al. (2018). Proteomics reveals key proteins participating in growth difference between fall dormant and non-dormant alfalfa in terminal buds. J. Proteom. 173 126–138. 10.1016/j.jprot.2017.11.029 PubMed DOI
Du H., Zeng X., Zhao M., Cui X., Wang Q., Yang H., et al. (2016). Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J. Biotechnol. 217 90–97. 10.1016/j.jbiotec.2015.11.005 PubMed DOI
Ebert J. (2007). Alfalfa’s bioenergy appeal. Ethanol Prod. Mag. 88–94.
Echt C. S., Kidwell K. K., Knapp S. J., Osborn T. C., McCoy T. J. (1994). Linkage mapping in diploid alfalfa (Medicago sativa). Genome 37 61–71. 10.1139/g94-008 PubMed DOI
Edwards D., Batley J. (2010). Plant genome sequencing: applications for crop improvement. Plant Biotechnol. J. 8 2–9. 10.1111/j.1467-7652.2009.00459.x PubMed DOI
Eid J., Fehr A., Gray J., Luong K., Lyle J., Otto G., et al. (2009). Real-time DNA sequencing from single polymerase molecules. Science 323 133–138. 10.1126/science PubMed DOI
Elgin J. H., Jr., Ostazeski S. A. (1985). Inheritance of resistance to race 1 and race 2 anthracnose in Arc and Saranac AR alfalfa. Crop Sci. 25 861–865. 10.2135/cropsci1985.0011183X002500050032x DOI
Elgin J. H., Jr., Welty R. E., Gilchrist D. B. (1988). Breeding for disease and nematode resistance. Alfalfa Alfalfa Impr. 29 827–858. 10.2134/agronmonogr29.c27 DOI
Esnault R., Buffard D., Breda C., Sallaud C., Turk J., Kondorosi A. (1993). Pathological and molecular characterizations of alfalfa interactions with compatible and incompatible bacteria, Xanthomonas campestris pv. alfalfae and Pseudomonas syringae pv. pisi. Mol. Plant Microbe Interact. 6 655–664. 10.1094/MPMI-6-655 PubMed DOI
Fan W., Ge G., Liu Y., Wang W., Liu L., Jia Y. (2018). Proteomics integrated with metabolomics: analysis of the internal causes of nutrient changes in alfalfa at different growth stages. BMC Plant Biol. 18:78 10.1186/s12870-018-1291-8 PubMed DOI PMC
Farooq M., Gogoi N., Hussain M., Barthakur S., Paul S., Bharadwaj N., et al. (2017). Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol. Biochem. 118 199–217. 10.1105/10.1016/j.plaphy.2017.06.020 PubMed DOI
Feng Z., Zhang B., Ding W., Liu X., Yang D. L., Wei P., et al. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 23 1229–1232. 10.1038/cr.2013.114 PubMed DOI PMC
Feyissa B. A., Arshad M., Gruber M. Y., Kohalmi S. E., Hannoufa A. (2019). The interplay between miR156/SPL13 and DFR/WD40–1 regulate drought tolerance in alfalfa. BMC plant Biol. 19:2059 10.1186/s12870-019-2059-5 PubMed DOI PMC
Flajoulot S., Ronfort J., Baudouin P., Barre P., Huguet T., Huyghe C., et al. (2005). Genetic diversity among alfalfa (Medicago sativa) cultivars coming from a breeding program, using SSR markers. Theor. Appl. Genet. 111 1420–1429. 10.1007/s00122-005-0074-4 PubMed DOI
Fleming M. B., Patterson E. L., Reeves P. A., Richards C. M., Gaines T. A., Walters C. (2018). Exploring the fate of mRNA in aging seeds: protection, destruction, or slow decay? J. Exp. Bot. 69 4309–4321. 10.1093/jxb/ery215 PubMed DOI PMC
Frendo P., Harrison J., Norman C., Jiménez M. J. H. (2005). Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. Mol. Plant-Mic. Int. 18 254–259. 10.1094/MPMI-18-0254 PubMed DOI
Fu G., Grbic V., Ma S., Tian L. (2015). Evaluation of somatic embryos of alfalfa for recombinant protein expression. Plant Cell Rep. 34 211–221. 10.1007/s00299-014-1700-x PubMed DOI
Fukuda A., Nakamura A., Tanaka Y. (1999). Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochem. Biophys. Acta 1446 149–155. 10.1016/s0167-4781(99)00065-2 PubMed DOI
Fürstenberg-Hägg J., Zagrobelny M., Bak S. (2013). Plant defense against insect herbivores. Int. J. Mol. Sci. 14 10242–10297. 10.3390/ijms140510242 PubMed DOI PMC
Gao R., Feyissa B. A., Croft M., Hannoufa A. (2018). Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa. Planta 247 1043–1050. 10.1007/s00425-018-2866-1 PubMed DOI
Gao Z., Luo W., Liu H., Zeng C., Liu X., Yi S., et al. (2012). Transcriptome analysis and SSR/SNP markers information of the blunt snout bream (Megalobrama amblycephala). PLoS One 7:42637 10.1371/journal.pone.0042637 PubMed DOI PMC
García A. N., Ayub N. D., Fox A. R., Gómez M. C., Diéguez M. J., Pagano E. M., et al. (2014). Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC Plant Biol. 14:248 10.1186/s12870-014-0248-9 PubMed DOI PMC
Gong B., Li X., Bloszies S., Wen D., Sun S., Wei M. (2014). Sodic alkaline stress mitigation by interaction of nitric oxide and polyamines involves antioxidants and physiological strategies in Solanum lycopersicum. Free Radic. Biol. Med. 71 36–48. 10.1016/j.freeradbiomed.2014.02.018 PubMed DOI
Graham D. B., Root D. E. (2015). Resources for the design of CRISPR gene editing experiments. Genome Biol. 16:26 10.1186/s13059-015-0823-x PubMed DOI PMC
Gutsch A., Keunen E., Guerriero G., Renaut J., Cuypers A., Hausman J. F., et al. (2018b). Long-term cadmium exposure influences the abundance of proteins that impact the cell wall structure in Medicago sativa stems. Plant Biol. 20 1023–1035. 10.1111/plb.12865 PubMed DOI PMC
Gutsch A., Zouaghi S., Renaut J., Cuypers A., Hausman J. F., Sergeant K. (2018a). Changes in the proteome of Medicago sativa leaves in response to long-term cadmium exposure using a cell-wall targeted approach. Int. J. Mol. Sci. 19:2498 10.3390/ijms19092498 PubMed DOI PMC
Guzman-Rodriguez J. J., Ibarra-Laclette E., Herrera-Estrella L., Ochoa-Zarzosa A., Suarez-Rodriguez L. M., Rodriguez-Zapata L. C., et al. (2013). Analysis of expressed sequence tags (ESTs) from avocado seed (Persea americana var. drymifolia) reveals abundant expression of the gene encoding the antimicrobial peptide snakin. Plant Physiol. Biochem. 70 318–324. 10.1016/j.plaphy.2013.05.045 PubMed DOI
Ha C. V., Watanabe Y., Tran U. T., Le D. T., Tanaka M., Nguyen K. H., et al. (2015). Comparative analysis of root transcriptomes from two contrasting drought-responsive Williams 82 and DT2008 soybean cultivars under normal and dehydration conditions. Front. Plant Sci. 6:551 10.3389/fpls.2015.00551 PubMed DOI PMC
Han Y., Kang Y., Torres-Jerez I., Cheung F., Town C. D., Zhao P. X., et al. (2011). Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis. BMC Genom. 12:350 10.1186/1471-2164-12-350 PubMed DOI PMC
Hartlerode A. J., Scully R. (2009). Mechanisms of double-strand break repair in somatic mammalian cells. Biochem. J. 423 157–168. 10.1042/BJ20090942 PubMed DOI PMC
Haun W., Coffman A., Clasen B. M., Demorest Z. L., Lowy A., Ray E., et al. (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol. J. 12 934–940. 10.1111/pbi.12201 PubMed DOI
Hawkins C., Yu L. X. (2018). Recent progress in alfalfa (Medicago sativa L.) genomics and genomic selection. Crop J. 6 565–575. 10.1016/j.cj.2018.01.006 DOI
He X. Z., Dixon R. A. (2000). Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4’-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell 12 1689–1702. 10.1105/tpc.12.9.1689 PubMed DOI PMC
Herrmann D., Flajoulot S., Barre P., Huyghe C., Ronfort J., Julier B. (2018). Comparison of morphological traits and molecular markers to analyse diversity and structure of alfalfa (Medicago sativa L.) cultivars. Gen. Res. Crop Evol. 65 527–540. 10.1007/s10722-017-0551-z DOI
Hipskind J. D., Paiva N. L. (2000). Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol. Plant Microbe Int. 13 551–556. 10.1094/MPMI.2000.13.5.551 PubMed DOI
Huang X., Kurata N., Wang Z. X., Wang A., Zhao Q., Zhao Y., et al. (2012). A map of rice genome variation reveals the origin of cultivated rice. Nature 490 497–501. 10.1038/nature11532 PubMed DOI PMC
Hwang E. Y., Song Q., Jia G., Specht J. E., Hyten D. L., Costa J., et al. (2014). A genome-wide association study of seed protein and oil content in soybean. BMC Genom. 15:2164 10.1186/1471-2164-15-1 PubMed DOI PMC
Jacobs T. B., LaFayette P. R., Schmitz R. J., Parrott W. A. (2015). Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol. 15:16 10.1186/s12896-015-0131-2 PubMed DOI PMC
Jaganathan D., Ramasamy K., Sellamuthu G., Jayabalan S., Venkataraman G. (2018). CRISPR for crop improvement: an update review. Front. Plant Sci. 9:985 10.3389/fpls.2018.00985 PubMed DOI PMC
Jain M., Olsen H. E., Paten B., Akeson M. (2016). The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Gen. Biol. 17:239 10.1186/s13059-016-1103-0 PubMed DOI PMC
Jin Q., Zhu K., Cui W., Xie Y., Han B., Shen W. (2013). Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system. Plant Cell Environ. 36 956–969. 10.1111/pce.12029 PubMed DOI
Jin T., Chang Q., Li W., Yin D., Li Z., Wang D., et al. (2010). Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Trans. Organ Cult. 100 219–227. 10.1007/s11240-009-9628-5 DOI
Jones J. D. G., Dangl J. L. (2006). The plant immune system. Nature 444 323–329. 10.1038/nature05286 PubMed DOI
Julier B., Flajoulot S., Barre P., Cardinet G., Santoni S., Huguet T., et al. (2003). Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant B. 3:9 10.1186/1471-2229-3-9 PubMed DOI PMC
Kanaar R., Hoeijmakers J. H., van Gent D. C. (1998). Molecular mechanisms of DNA double strand break repair. Trends Cell. Biol. 8 483–489. 10.1016/S0962-8924(98)01383-X PubMed DOI
Kang P., Bao A. K., Kumar T., Pan Y. Q., Bao Z., Wang F., et al. (2016). Assessment of stress tolerance, productivity, and forage quality in T1 transgenic alfalfa co-overexpressing ZxNHX and ZxVP1-1 from Zygophyllum xanthoxylum. Front. Plant Sci. 7:1598 10.3389/fpls.2016.01598 PubMed DOI PMC
Kang Y., Han Y., Torres-Jerez I., Wang M., Tang Y., Monteros M., et al. (2011). System responses to long-term drought and re-watering of two contrasting alfalfa varieties. Plant J. 68 871–889. 10.1111/j.1365-313X.2011.04738.x PubMed DOI
Kang Y., Sakiroglu M., Krom N., Stanton-Geddes J., Wang M., Lee Y. C., et al. (2015). Genome-wide association of drought-related and biomass traits with HapMap SNPs in Medicago truncatula. Plant Cell Environ. 38 1997–2011. 10.1111/pce.12520 PubMed DOI
Kersey P. J. (2019). Plant genome sequences: past, present, future. Curr. Opin. Plant Biol. 48 1–8. 10.1016/j.pbi.2018.11.001 PubMed DOI
Khan Z., Khan S. H., Mubarik M. S., Sadia B., Ahmad A. (2017). Use of TALEs and TALEN technology for genetic improvement of plants. Plant Mol. Biol. Rep. 35 1–19. 10.1007/s11105-016-0997-8 DOI
Khu D. M., Reyno R., Han Y., Zhao P. X., Bouton J. H., Brummer E. C., et al. (2013). Identification of aluminum tolerance quantitative trait loci in tetraploid alfalfa. Crop Sci. 53 148–163. 10.2135/cropsci2012.03.0181 DOI
Kiegerl S., Cardinale F., Siligan C., Gross A., Baudouin E., Liwosz A., et al. (2000). SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress–induced MAPK, SIMK. Plant Cell 12 2247–2258. 10.1105/tpc.12.11.2247 PubMed DOI PMC
Kim K. Y., Kwon S. Y., Lee H. S., Hur Y., Bang J. W., Kwak S. S. (2003). A novel oxidative stress-inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant Mol. Biol. 51 831–838. 10.1023/a:1023045218815 PubMed DOI
Kiss G. B., Csanádi G., Kálmán K., Kaló P., Ökrész L. (1993). Construction of a basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers. Mol. Gen. Gen. 238 129–137. 10.1007/BF00279539 PubMed DOI
Klapheck S. (1988). Homoglutathione: isolation, quantification and occurrence in legumes. Physiol. Plant. 74 727–732. 10.1111/j.1399-3054.1988.tb02044.x DOI
Komatsu S., Ahsan N. (2009). Soybean proteomics and its application to functional analysis. J. Proteomics 72 325–336. 10.1016/j.jprot.2008.10.001 PubMed DOI
Komis G., Illés P., Beck M., Šamaj J. (2011). Microtubules and mitogen-activated protein kinase signalling. Curr. Oppin. Plant Biol. 14 650–657. 10.1016/j.pbi.2011.07.008 PubMed DOI
Köpp M., Passos L., Verneue R., Lédo F. J., Coimbra J. L., de Oliveira A. (2011). Effects of nutrient solution pH on growth parameters of alfalfa (Medicago sativa L.) genotypes. Comun. Sci.e 2 135–141. 10.14295/cs.v2i3.39 DOI
Korver R. A., Koevoets I. T., Testerink C. (2018). Out of shape during stress: a key role for auxin. Trends Plant Sci. 23 783–793. 10.1016/j.tplants.2018.05.011 PubMed DOI PMC
Kovalskaya N., Hammond R. W. (2009). Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins. Protein Expr. Purif. 63 12–17. 10.1016/j.pep.2008.08.013 PubMed DOI
Kudapa H., Ramalingam A., Nayakoti S., Chen W., Zhuang W., Liang X., et al. (2013). Functional genomics to study stress responses in crop legumes: progress and prospects. Funct. Plant Biol. 40 1221–1233. 10.1071/FP13191 PubMed DOI
Kuluev B. R., Gumerova G. R., Mikhaylova E. V., Gerashchenkov G. A., Rozhnova N. A., Vershinina Z. R., et al. (2019). Delivery of CRISPR/Cas components into higher plant cells for genome editing. Russ. J. Plant. Physl. 66 694–706. 10.1134/S102144371905011X DOI
Kumar T., Bao A. K., Bao Z., Wang F., Gao L., Wang S. M. (2018). The progress of genetic improvement in alfalfa (Medicago sativa L.). Czech. J. Genet. Plant Breed. 54 41–51. 10.17221/46/2017-CJGPB DOI
Laberge S., Castonguay Y., Vézina L. P. (1993). New cold-and drought-regulated gene from Medicago sativa. Plant Physiol. 101 1411–1411. 10.1104/pp.101.4.1411 PubMed DOI PMC
Lardi M., Pessi G. (2018). Functional genomics approaches to studying symbioses between legumes and nitrogen-fixing rhizobia. High Throughput. 7:15 10.3390/ht7020015 PubMed DOI PMC
Le B. H., Wagmaister J. A., Kawashima T., Bui A. Q., Harada J. J., Goldberg R. B. (2007). Using genomics to study legume seed development. Plant Physiol. 144 562–574. 10.1104/pp.107.100362 PubMed DOI PMC
Le D. T., Nishiyama R., Watanabe Y., Tanaka M., Seki M., Ham L. H., et al. (2012). Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS One 7:e49522 10.1371/journal.pone.0049522 PubMed DOI PMC
Le Nguyen K., Grondin A., Courtois B., Gantet P. (2018). Next-generation sequencing accelerates crop gene discovery. Trends Plant Sci. 24 8 10.1016/j.tplants.2018.11.008 PubMed DOI
Lei Y., Xu Y., Hettenhausen C., Lu C., Shen G., Zhang C., et al. (2018). Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms. BMC Plant Biol. 18:35 10.1186/s12870-018-1250-4 PubMed DOI PMC
Li H., Wang Z., Ke Q., Ji C. Y., Jeong J. C., Lee H. S., et al. (2014). Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa. Plant Physiol. Biochem. 85 31–40. 10.1016/j.plaphy.2014.10.010 PubMed DOI
Li J. F., Norville J. E., Aach J., McCormack M., Zhang D., Bush J., et al. (2013). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31 688–691. 10.1038/nbt.2654 PubMed DOI PMC
Li S., Jia S., Hou L., Nguyen H., Sato S., Holding D., et al. (2019). Mapping of transgenic alleles in soybean using a nanopore-based sequencing strategy. J. Exp. Bot. 70 3825–3833. 10.1093/jxb/erz202 PubMed DOI PMC
Li T., Huang S., Jiang W. Z., Wright D., Spalding M. H., Weeks D. P., et al. (2011). TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 39 359–372. 10.1093/nar/gkq704 PubMed DOI PMC
Li W., Wei Z., Qiao Z., Wu Z., Cheng L., Wang Y. (2013). Proteomics analysis of alfalfa response to heat stress. PLoS One 8:e82725 10.1371/journal.pone.0082725 PubMed DOI PMC
Li X., Brummer E. C. (2012). Applied genetics and genomics in alfalfa breeding. Agronomy 2 40–61. 10.3390/agronomy2010040 DOI
Li X., Hannoufa A., Zhang Y., Yu P. (2016). Gene-silencing-induced changes in carbohydrate conformation in relation to bioenergy value and carbohydrate subfractions in modeled plant (Medicago sativa) with down-regulation of HB12 and TT8 transcription factors. Int. J. Mol. Sci. 17:720 10.3390/ijms17050720 PubMed DOI PMC
Li X., Wei Y., Acharya A., Jiang Q., Kang J., Brummer E. C. (2014). A saturated genetic linkage map of autotetraploid alfalfa (Medicago sativa L.) developed using genotyping-by-sequencing is highly syntenous with the Medicago truncatula genome. G3 4 1971–1979. 10.1534/g3.114.012245 PubMed DOI PMC
Li Z., Liu Z. B., Xing A., Moon B. P., Koellhoffer J. P., Huang L., et al. (2015). Cas9-guide RNA directed genome editing in soybean. Plant Physiol. 169 960–970. 10.1104/pp.15.00783 PubMed DOI PMC
Libault M., Pingault L., Zogli P., Schiefelbein J. (2017). Plant systems biology at the single-cell level. T. Plant Sci. 22 949–960. 10.1016/j.tplants.2017.08.006 PubMed DOI
Liu H., Ding Y., Zhou Y., Jin W., Xie K., Chen L. L. (2017). CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol. Plant 10 530–532. 10.1016/j.molp.2017.01.003 PubMed DOI
Liu W., Xiong C., Yan L., Zhang Z., Ma L., Wang Y., et al. (2017). Transcriptome analyses reveal candidate genes potentially involved in al stress response in alfalfa. Front. Plant Sci. 8:26 10.3389/fpls.2017.00026 PubMed DOI PMC
Liu X., Wu S., Xu J., Sui C., Wei J. (2019). Application of CRISPR/Cas9 in plant biology. Acta Pharm. Sin. B. 7 292–302. 10.1016/j.apsb.2017.01.002 PubMed DOI PMC
Liu X. P., Hawkins C., Peel M. D., Yu L. X. (2019). Genetic loci associated with salt tolerance in advanced breeding populations of tetraploid alfalfa using genome-wide association studies. Plant Genome 12:26 10.3835/plantgenome2018.05.0026 PubMed DOI
Liu Z., Chen T., Ma L., Zhao Z., Zhao P. X., Nan Z., et al. (2013). Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa. PLoS One 8:e83549 10.1371/journal.pone.0083549 PubMed DOI PMC
Long R., Gao Y., Sun H., Zhang T., Li X., Li M., et al. (2018). Quantitative proteomic analysis using iTRAQ to identify salt-responsive proteins during the germination stage of two Medicago species. Sci. Rep. 8:9553 10.1038/s41598-018-27935-8 PubMed DOI PMC
Long R., Li M., Zhang T., Kang J., Sun Y., Cong L., et al. (2016). Comparative proteomic analysis reveals differential root proteins in Medicago sativa and Medicago truncatula in response to salt stress. Front. Plant Sci. 7:424 10.3389/fpls.2016.00424 PubMed DOI PMC
Lu H., Giordano F., Ning Z. (2016). Oxford Nanopore MinION sequencing and genome assembly. Genom. Proteom. Bioinf. 14 265–279. 10.1016/j.gpb.2016.05.004 PubMed DOI PMC
Luo D., Wu Y., Liu J., Zhou Q., Liu W., Wang Y., et al. (2019a). Comparative transcriptomic and physiological analyses of Medicago sativa L. indicates that multiple regulatory networks are activated during continuous aba treatment. Int. J. Mol. Sci. 20:E47 10.3390/ijms20010047 PubMed DOI PMC
Luo D., Zhou Q., Wu Y., Chai X., Liu W., Wang Y., et al. (2019b). Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC Plant Biol. 19:32 10.1186/s12870-019-1630-4 PubMed DOI PMC
Luo M., Lin L., Hill R. D., Mohapatra S. S. (1991). Primary structure of an environmental stress and abscisic acid-inducible alfalfa protein. Plant Mol. Biol. 17 1267–1269. 10.1007/bf00028745 PubMed DOI
Luo M., Liu J. H., Mohapatra S., Hill R. D., Mohapatra S. S. (1992). Characterization of a gene family encoding abscisic acid-and environmental stress-inducible proteins of alfalfa. J. Biol. Chem. 267 15367–15374. PubMed
Ma Q., Kang J., Long R., Zhang T., Xiong J., Zhang K., et al. (2017). Comparative proteomic analysis of alfalfa revealed new salt and drought stress-related factors involved in seed germination. Mol. Biol. Rep. 44 261–272. 10.1007/s11033-017-4104-5 PubMed DOI
Mackie J. M., Musial J. M., Armour D. J., Phan H. T. T., Ellwood S. E. (2007). Identification of QTL for reaction to three races of Colletotrichum trifolii and further analysis of inheritance of resistance in autotetraploid lucerne. Theor. Appl. Genet. 114 1417–1426. 10.1007/s00122-007-0527-z PubMed DOI
Macovei A., Gill S. S., Tuteja N. (2012). microRNAs as promising tools for improving stress tolerance in rice. Plant Sig. Beh. 7 1296–1301. 10.4161/psb.21586 PubMed DOI PMC
Mahfouz M. M., Li L., Shamimuzzaman M., Wibowo A., Fang X., Zhu J. K. (2011). De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc. Natl. Acad. Sci. U.S.A. 108 2623–2628. 10.1073/pnas.1019533108 PubMed DOI PMC
Makarova K. S., Zhang F., Koonin E. V. (2017). SnapShot: Class 2 CRISPR-Cas systems. Cell 168 328–328. 10.1016/j.cell.2016.12.038 PubMed DOI
Malzahn A., Lowder L., Qil Y. (2017). Plant genome editing with TALEN and CRISPR. Cell Biosci. 7:21 10.1186/s13578-017-0148-4 PubMed DOI PMC
Mao Y. F., Botella J. R., Liu Y. G., Zhu J. K. (2019). Gene editing in plants: progress and challenges. Natl. Sci. Rev. 6 421–437. 10.1093/nsr/nwz005 PubMed DOI PMC
Margulies M., Egholm M., Altman W. E., Attiya S., Bader J. S., Bemben L. A., et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437 376–380. 10.1038/nature03959 PubMed DOI PMC
Marraffini L. A., Sontheimer E. J. (2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322 1843–1845. 10.1126/science.1165771 PubMed DOI PMC
Masonbrink R. E., Severin A. J., Seetharam A. S. (2017). “Comparative genomics of soybean and other legumes,” in The Soybean Genome, eds Nguyen H., Bhattacharyya M. (Cham: Springer; ), 83–93. 10.1007/978-3-319-64198-0_6 DOI
Masoud S. A., Zhu Q., Lamb C., Dixon R. A. (1996). Constitutive expression of an inducible β-1,3-glucanase in alfalfa reduces disease severity caused by the oomycete pathogen Phytophthora megasperma f. sp. medicaginis, but does not reduce disease severity of chitin-containing fungi. Transgenic Res. 5 313–323. 10.1007/BF01968941 DOI
Matamoros M. A., Moran J. F., Iturbe-Ormaetxe I., Rubio M. C., Becana M. (1999). Glutathione and homoglutathione synthesis in legume root nodules. Plant Physiol. 121 879–888. 10.1104/pp.121.3.879 PubMed DOI PMC
Matthews C., Arshad M., Hannoufa A. (2019). Alfalfa response to heat stress is modulated by microRNA156. Physiol. Plant. 165 830–842. 10.1111/ppl.12787 PubMed DOI
McCoy T. J., Bingham E. T. (1988). “Cytology and cytogenetics of alfalfa,” in Alfalfa and Alfalfa Improvement, ed. Hanson A. A. (Madison, WI: ASA; ), 737–776.
Meng Y., Wang C., Yin P., Zhu B., Zhang P., Niu L., et al. (2019). “Targeted mutagenesis by an optimized agrobacterium-delivered CRISPR/Cas 9 system in the model legume Medicago truncatula,” in The Model Legume Medicago truncatula, ed. Bruijn F. D. (Hoboken, NJ: Wiley; ), 1015–1018. 10.1002/9781119409144.ch130 DOI
Meng Y. Y., Hou Y. L., Wang H., Ji R. H., Liu B., Wen J. Q., et al. (2017). Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula. Plant Cell Rep. 36 371–374. 10.1007/s00299-016-2069-9 PubMed DOI
Michno J. M., Wang X., Liu J., Curtin S. J., Kono T. J., Stupar R. M. (2015). CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6 243–252. 10.1080/21645698.2015.1106063 PubMed DOI PMC
Miller J. C., Tan S., Qiao G., Barlow K. A., Wang J., Xia D. F., et al. (2011). A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29 143–148. 10.1038/nbt.1755 PubMed DOI
Mittler R., Blumwald E. (2015). The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27 64–70. 10.1105/tpc.114.133090 PubMed DOI PMC
Mo Y., Liang G., Shi W., Xie J. (2011). Metabolic responses of alfalfa (Medicago Sativa L.) leaves to low and high temperature induced stresses. Afr. J. Biotechnol. 10 1117–1124. 10.5897/AJB10.1433 DOI
Moradpour M., Abdulah S. N. A. (2020). CRISPR/dCas9 platforms in plants: strategies and applications beyond genome editing. Plant Biotechnol. J. 18 32–44. 10.1111/pbi.13232 PubMed DOI PMC
Musial J. M., Mackie J. M., Armour D. J., Phan H. T. T., Ellwood S. E., Aitken K. S., et al. (2007). Identification of QTL for resistance and susceptibility to Stagonospora meliloti in autotetraploid lucerne. Theor. Appl. Gen. 114 1427–1435. 10.1007/s00122-007-0528-y PubMed DOI
Nakano K., Shiroma A., Shimoji M., Tamotsu H., Ashimine N., Ohki S., et al. (2017). Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area. Hum. Cell 30 149–161. 10.1007/s13577-017-0168-8 PubMed DOI PMC
Nekrasov V., Staskawicz B., Weigel D., Jones J. D., Kamoun S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31 691–693. 10.1038/nbt.2655 PubMed DOI
Nekrasov V., Wang C. M., Win J. (2017). Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 7:482 10.1038/s41598-017-00578-x PubMed DOI PMC
Ninković S., Miljuš-Ðukić J., Nešković M. (1995). Genetic transformation of alfalfa somatic embryos and their clonal propagation through repetitive somatic embryogenesis. Plant Cell T. Organ Cult. 42 255–260. 10.1007/BF00029996 DOI
Nirola R., Megharaj M., Beecham S., Aryal R., Thavamani P., Vankateswarlu K., et al. (2016). Remediation of metalliferous mines, revegetation challenges and emerging prospects in semi-arid and arid conditions. Env. Sci. Poll. Res. 23 20131–20150. 10.1007/s11356-016-7372-z PubMed DOI
Nutter F. W., Guan J., Gotlieb A. R., Rhodes L. H., Grau C. R., Sulc R. M. (2002). Quantifying alfalfa yield losses caused by foliar diseases in Iowa, Ohio, Wisconsin, and Vermont. Plant Dis. 863 269–277. 10.1094/PDIS.2002.86.3.269 PubMed DOI
Olukolu B. A., Tracy W. F., Wisser R., De Vries B., Balint-Kurti P. J. (2016). A genome-wide association study for partial resistance to maize common rust. Phytopath. 106 745–751. 10.1094/PHYTO-11-15-0305-R PubMed DOI
O’Rourke J. A., Fu F., Bucciarelli B., Yang S. S., Samac D. A., Lamb J. F. S., et al. (2015). The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies. BMC Genom. 16:502 10.1186/s12864-015-1718-7 PubMed DOI PMC
Ovečka M., Takáč T., Komis G., Vadovič P., Bekešová S., Doskočilová A., et al. (2014). Salt-induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis. J. Exp. Bot. 65 2335–2350. 10.1093/jxb/eru115 PubMed DOI PMC
Paparella S., Araújo S. S., Rossi G., Wijayasinghe M., Carbonera D., Balestrazzi A. (2015). Seed priming: state of the art and new perspectives. Plant Cell Rep. 34 1281–1293. 10.1007/s00299-015-1784-y PubMed DOI
Pâques F., Duchateau P. (2007). Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr. Gene Ther. 7 49–66. 10.2174/156652307779940216 PubMed DOI
Pasternak T., Asard H., Potters G., Jansen M. A. (2014). The thiol compounds glutathione and homoglutathione differentially affect cell development in alfalfa (Medicago sativa L.). Plant Phys. Biochem. 74 16–23. 10.1016/j.plaphy.2013.10.028 PubMed DOI
Pastwa E., Blasiak J. (2003). Non-homologous DNA end joining. Acta. Biochim. Pol. 50 891–908. 10.18388/abp.2003_3622 PubMed DOI
Paszkowski J., Baur M., Bogucki A., Potrykus I. (1988). Gene targeting in plants. EMBO J. 7 4021–4026. 10.1002/j.1460-2075.1988.tb03295.x PubMed DOI PMC
Pavlovich M. (2017). Computing in biotechnology: omics and beyond. Trends Biotechnol. 35 450–497. 10.1016/j.tibtech.2017.03.011 PubMed DOI
Pennycooke J. C., Cheng H., Stockinger E. J. (2008). Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes. Plant Physiol. 146 1242–1254. PubMed PMC
Piano E., Pecetti L. (2010). “Minor legume species,” in Fodder Crops and Amenity Grassesm Handbook of Plant Breeding, Vol. 5 eds Boller B., Posselt U. K., Veronesi F. (NewYork, NY: Springer; ), 477–500. 10.1007/978-1-4419-0760-8_20 DOI
Postnikova O. A., Hult M., Shao J., Skantar A., Nemchinov L. G. (2015). Transcriptome analysis of resistant and susceptible alfalfa cultivars infected with root-knot nematode Meloidogyne incognita. PLoS One 10:e0123157 10.1371/journal.pone.0118269 PubMed DOI PMC
Postnikova O. A., Shao J., Nemchinov L. G. (2013). Analysis of the alfalfa root transcriptome in response to salinity stress. Plant Cell Physiol. 54 1041–1055. 10.1093/pcp/pct056 PubMed DOI
Pratt R. G., Rowe D. E. (2002). Enhanced resistance to Sclerotium rolfsii in populations of alfalfa selected for quantitative resistance to Sclerotinia trifoliorum. Phytopathology 92 204–209. 10.1094/PHYTO.2002.92.2.204 PubMed DOI
Printz B., Guerriero G., Sergeant K., Audinot J. N., Guignard C., Renaut J., et al. (2016). Combining-omics to unravel the impact of copper nutrition on alfalfa (Medicago sativa) stem metabolism. Plant Cell Physiol. 57 407–422. 10.1093/pcp/pcw001 PubMed DOI PMC
Printz B., Guerriero G., Sergeant K., Renaut J., Lutts S., Hausman J. F. (2015). Ups and downs in alfalfa: proteomic and metabolic changes occurring in the growing stem. Plant Sci. 238 13–25. 10.1016/j.plantsci.2015.05.014 PubMed DOI
Puchta H., Dujon B., Hohn B. (1993). Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res. 21 5034–5040. 10.1093/nar/21.22.5034 PubMed DOI PMC
Qi Y. (2015). “High efficient genome modification by designed zinc finger nuclease,” in Advances in New Technology for Targeted Modification of Plant Genomes, eds Zhang F., Puchta H., Thomson J. G. (New York, NY: Springer; ), 39–53. 10.1007/978-1-4939-2556-8_3 DOI
Radović J., Sokolović D., Marković J. (2009). Alfalfa-most important perennial forage legume in animal husbandry. Biotechnol. Anim. Husb. 25 465–475. 10.2298/BAH0906465R DOI
Rahman M. A., Alam I., Kim Y. G., Ahn N. Y., Heo S. H., Lee D. G., et al. (2015). Screening for salt-responsive proteins in two contrasting alfalfa cultivars using a comparative proteome approach. Plant Physiol. Biochem. 89 112–122. 10.1016/j.plaphy.2015.02.015 PubMed DOI
Rahman M. A., Yong-Goo K., Iftekhar A., Liu G., Hyoshin L., Joo L. J., et al. (2016). Proteome analysis of alfalfa roots in response to water deficit stress. J. Integr. Agric. 15 1275–1285. 10.1016/S2095-3119(15)61255-2 DOI
Rashmi R., Sarkar M., Vikramaditya T. (1997). Cultivaton of alfalfa (Medicago sativa L.). Anc. Sci. Life 17 117–119. PubMed PMC
Rhodes D., Hanson A. D. (1993). Quaternary ammonium and tertiary sulfonium compounds in higher plants. Ann. Rev. Plant Biol. 44 357–384. 10.1146/annurev.pp.44.060193.002041 DOI
Robins J. G., Luth D., Campbell T. A., Bauchan G. R., He C., Viands D. R., et al. (2007). Genetic mapping of biomass production in tetraploid alfalfa. Crop Sci. 47 1–10. 10.2135/cropsci2005.11.0401 DOI
Rothberg J. M., Hinz W., Rearick T. M., Schultz J., Mileski W., Davey M., et al. (2011). An integrated semiconductor device enabling non-optical genome sequencing. Nature 475 348–352. 10.1038/nature10242 PubMed DOI
Roumen E. C. (1994). “A strategy for accumulating genes for partial resistance to blast disease in rice within a conventional breeding program,” in Rice Blast Disease, eds Zeigler R. S., Leong S. A., Teng P. S. (Cambridge: CAB International; ), 245–265.
Rubiales D., Fondevilla S., Chen W., Gentzbittel L., Higgins T. J. V., Castillejo M. A., et al. (2015). Achievements and challenges in legume breeding for pest and disease resistance. CRC Crit. Rev. Plant Sci. 34 195–236. 10.1080/07352689.2014.898445 DOI
Sakiroglu M., Brummer E. C. (2017). Identification of loci controlling forage yield and nutritive value in diploid alfalfa using GBS-GWAS. Theor. Appl. Gen. 130 261–268. 10.1007/s00122-016-2782-3 PubMed DOI
Samac D., Smigocki A. (2003). Expression of oryzacystatin I and II in alfalfa increases resistance to the root-lesion nematode. Phytopathology 93 799–804. 10.1094/PHYTO.2003.93.7.799 PubMed DOI
Samac D. A., Temple S. J. (2004). “Development and utilization of transformation in Medicago species,” in Genetically Modified Crops, Their Development, Uses and Risks, eds Liang G. H., Skinner D. Z. (New York, NY: The Haworth Press; ), 165–202.
Šamaj J., Ovečka M., Hlavačka A., Lecourieux F., Meskiene I., Lichtscheidl I., et al. (2002). Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J. 21 3296–3306. 10.1093/emboj/cdf349 PubMed DOI PMC
Šamajová O., Komis G., Šamaj J. (2013a). Emerging topics in the cell biology of mitogen-activated protein kinases. Trans. Plant Sci. 18 140–148. 10.1016/j.tplants.2012.11.004 PubMed DOI
Šamajová O., Plíhal O., Al-Yousif M., Hirt H., Šamaj J. (2013b). Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotech. A. 31 118–128. 10.1016/j.biotechadv.2011.12.002 PubMed DOI
Sander J. D., Dahlborg E. J., Goodwin M. J., Cade L., Zhang F., Cifuentes D., et al. (2011). Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat. Methods 8 67–69. 10.1038/nmeth.1542 PubMed DOI PMC
Sato S., Nakamura Y., Kaneko T., Asamizu E., Kato T., Nakao M., et al. (2008). Genome structure of the legume, Lotus japonicus. DNA Res. 15 227–239. 10.1093/dnares/dsn008 PubMed DOI PMC
Scheben A., Verpaalen B., Lawley C. T., Chan C. K. K., Bayer P. E., Batley J., et al. (2019). CropSNPdb: a database of SNP array data for Brassica crops and hexaploid bread wheat. Plant J. 98 142–152. 10.1111/tpj.14194 PubMed DOI
Schena M., Shalon D., Davis R. W., Brown P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270 467–470. 10.1126/science.270.5235.467 PubMed DOI
Schiml S., Puchta H. (2016). Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. Plant Methods 12:8 10.1186/s13007-016-0103-0 PubMed DOI PMC
Schmutz J., Cannon S. B., Schlueter J., Ma J., Mitros T., Nelson W., et al. (2010). Genome sequence of the palaeopolyploid soybean. Nature 463 178–183. 10.1038/nature08670 PubMed DOI
Schreiber M., Stein N., Mascher M. (2018). Genomic approaches for studying crop evolution. Genome Biol. 19:140 10.1186/s13059-018-1528-8 PubMed DOI PMC
Segura A., Moreno M., Madueno F., Molina A., Garcia-Olmedo F. (1999). Snakin-1, a peptide from potato that is active against plant pathogens. Mol. Plant Microbe Interact. 12 16–23. 10.1094/MPMI.1999.12.1.16 PubMed DOI
Severin A. J., Cannon S. B., Graham M. M., Grant D., Shoemaker R. C. (2011). Changes in twelve homoeologous genomic regions in soybean following three rounds of polyploidy. Plant Cell 23 3129–3136. 10.1105/tpc.111.089573 PubMed DOI PMC
Shafique A., Rehman A., Khan A., Kazi A. G. (2014). “Chapter 1 - Improvement of legume crop production under environmental stresses through biotechnological intervention,” in Emerging Technologies and Management of Crop Stress Tolerance: Volume II - A Sustainable Approach, eds Ahmad P., Rehman S. (San Diego: Accademic Press; ), 1–22. 10.1016/B978-0-12-800875-1.00001-6 DOI
Shan Q., Wang Y., Li J., Zhang Y., Chen K., Liang Z., et al. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31 686–688. 10.1038/nbt.2650 PubMed DOI
Shan S., Soltis P. S., Soltis D. E., Yang B. (2020). Considerations in adapting CRISPR/Cas9 in nongenetic model plant systems. Appl. Plant Sci. 8 e11314 10.1002/aps3.11314 PubMed DOI PMC
Singer S. D., Hannoufa A., Acharya S. (2018). Molecular improvement of alfalfa for enhanced productivity and adaptability in a changing environment. Plant Cell Environ. 41 1955–1971. 10.1111/pce.13090 PubMed DOI
Smith J., Grizot S., Arnould S., Duclert A., Epinat J. C., Chames P., et al. (2006). A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res. 34 e149 10.1093/nar/gkl720 PubMed DOI PMC
Song L., Jiang L., Chen Y., Shu Y., Bai Y., Guo C. (2016). Deep-sequencing transcriptome analysis of field-grown Medicago sativa L. crown buds acclimated to freezing stress. Func. Integr. Genomics 16 495–511. 10.1007/s10142-016-0500-5 PubMed DOI
Stefanova G., Slavov S., Gecheff K., Vlahova M., Atanassov A. (2013). Expression of recombinant human lactoferrin in transgenic alfalfa plants. Biol. Plant. 57 457–464. 10.1007/s10535-013-0305-5 DOI
Steinert J., Schiml S., Puchta H. (2016). Homology-based double-strand break-induced genome engineering in plants. Plant Cell Rep. 35 1429–1438. 10.1007/s00299-016-1981-3 PubMed DOI
Strizhov N., Keller M., Mathur J., Koncz-Kálmán Z., Bosch D., Prudovsky E., et al. (1996). A synthetic cryIC gene, encoding a Bacillus thuringiensis δ-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proc. Natl. Acad. Sci. U.S.A. 93 15012–15017. 10.1073/pnas.93.26.15012 PubMed DOI PMC
Stritzler M., Elba P., Berini C., Gomez C., Ayub N., Soto G. (2018). High-quality forage production under salinity by using a salt-tolerant AtNXH1-expressing transgenic alfalfa combined with a natural stress-resistant nitrogen-fixing bacterium. J. Biotechnol. 276 42–45. 10.1016/j.jbiotec.2018.04.013 PubMed DOI
Sun X., Hu Z., Chen R., Jiang Q., Song G., Zhang H., et al. (2015). Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci. Rep. 5:10342 10.1038/srep10342 PubMed DOI PMC
Tang F., Yang S., Liu J., Zhu H. (2016). Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported. Plant Physiol. 170 26–32. 10.1104/pp.15.01661 PubMed DOI PMC
Tang H., Krishnakumar V., Bidwell S., Rosen B., Chan A., Zhou S., et al. (2014). An improved genome release (version Mt4. 0) for the model legume Medicago truncatula. BMC genom. 15:312 10.1186/1471-2164-15-312 PubMed DOI PMC
Tang X., Liu G. Q., Zhou J. P., Ren Q., You Q., Tian L., et al. (2018). A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol. 19:84 10.1186/s13059-018-1458-5 PubMed DOI PMC
Tesfaye M., Denton M. D., Samac D. A., Vance C. P. (2005). Transgenic alfalfa secretes a fungal endochitinase protein to the rhizosphere. Plant Soil 269 233–243. 10.1007/s11104-004-0520-0 DOI
Tesfaye M., Liu J., Vance C. P. (2007). Genomic and genetic control of phosphate stress in legumes. Plant Physiol. 144 594–603. 10.1104/pp.107.097386 PubMed DOI PMC
Toth E., Bakheit B. R. (1983). Results of resistance breeding in alfalfa. II. Resistance to Verticillium wilt. Acta Biol. Hung. 32 78–85.
Triboi E., Triboi-Blondel A. M. (2014). “Towards sustainable, self-supporting agriculture: biological nitrogen factories as a key for future cropping systems,” in Soil as World Heritage, ed. Dent D. (Dordrecht: Springer; ), 329–342. 10.1007/978-94-007-6187-2_32 DOI
Tripathi P., Rabara R. C., Reese R. N., Miller M. A., Rohila J. S., Subramanian S., et al. (2016). A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes. BMC Genom. 17:102 10.1186/s12864-016-2420-0 PubMed DOI PMC
Tu X., Liu Z., Zhang Z. (2018a). Comparative transcriptomic analysis of resistant and susceptible alfalfa cultivars (Medicago sativa L.) after thrips infestation. BMC Genom. 19:116 10.1186/s12864-018-4495-2 PubMed DOI PMC
Tu X., Zhao H., Zhang Z. (2018b). Transcriptome approach to understand the potential mechanisms of resistant and susceptible alfalfa (Medicago sativa L.) cultivars in response to aphid feeding. J. Integr. Agric. 17 2518–2527. 10.1016/S2095-3119(17)61843-4 DOI
Valliyodan B., Ye H., Song L., Murphy M., Shannon J. G., Nguyen H. T. (2017). Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. J. Exp. Bot. 68 1835–1849. 10.1093/jxb/erw433 PubMed DOI
Van K., Rastogi K., Kim K. H., Lee S. H. (2013). Next-generation sequencing technology for crop improvement. SABRAO J. Breed. Genet. 45 84–99. 10.3389/fpls.2014.00367 DOI
Varshney R. K., Kudapa H. (2013). Legume biology: the basis for crop improvement. Funct. Plant Biol. 40 5–8. 10.1071/FPv40n12_FO PubMed DOI
Volkov V., Wang B., Dominy P. J., Fricke W., Amtmann A. (2004). Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant Cell Environ. 27 1–14. 10.1046/j.0016-8025.2003.01116.x DOI
Walter M. H., Liu J. W., Wünn J., Hess D. (1996). Bean ribonuclease-like pathogenesis-related protein genes Ypr10 display complex patterns of developmental, dark-induced and exogenous-stimulus-dependent expression. Eur. J. Biochem. 239 281–293. 10.1111/j.1432-1033.1996.0281u.x PubMed DOI
Wang K., Wang Z., Li F., Ye W., Wang J. (2012). The draft genome of a diploid cotton Gossypium raimondii. Nature Gen. 44 1098–1103. 10.1038/ng.2371 PubMed DOI
Wang L., Rubio M. C., Xin X., Zhang B., Fan Q., Wang Q., et al. (2019). CRISPR/Cas9 knockout of leghemoglobin genes in Lotus japonicus uncovers their synergistic roles in symbiotic nitrogen fixation. New Phytol. 224 818–832. 10.1111/nph.16077 PubMed DOI
Wang L., Sun S., Wu T., Liu L., Sun X., Cai Y., et al. (2020). Natural variation and CRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechnol. J. 1–13. 10.1111/pbi.13346 PubMed DOI PMC
Wang L., Wang L., Tan Q., Fan Q., Zhu H., Hong Z., et al. (2016). Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9. Front. Plant Sci. 7:1333 10.3389/fpls.2016.01333 PubMed DOI PMC
Wang Z., Gerstein M., Snyder M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10 57–63. 10.1038/nrg2484 PubMed DOI PMC
Wang Z., Li H., Ke Q., Jeong J. C., Lee H. S., Xu B., et al. (2014). Transgenic alfalfa plants expressing AtNDPK2 exhibit increased growth and tolerance to abiotic stresses. Plant Physiol. Biochem. 84 67–77. 10.1016/j.plaphy.2014.08.025 PubMed DOI
Watson B. S., Bedair M. F., Urbanczyk-Wochniak E., Huhman D. V., Yang D. S., Allen S. N., et al. (2015). Integrated metabolomics and transcriptomics reveal enhanced specialized metabolism in Medicago truncatula root border cells. Plant Physiol. 167 1699–1716. 10.1093/jxb/erx308 PubMed DOI PMC
Wen L., Chen Y., Schnabel E., Crook A., Frugoli J. (2019). Comparison of efficiency and time to regeneration of Agrobacterium-mediated transformation methods in Medicago truncatula. Plant Met. 15:20 10.1186/s13007-019-0404-1 PubMed DOI PMC
Wiedenheft B., Sternberg S. H., Doudna J. A. (2012). RNA-guided genetic silencing systems in bacteria and archaea. Nature 482 331–338. 10.1038/nature10886 PubMed DOI
Wong C. E., Li Y., Moffatt B. A. (2006). Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol. 140 1437–1450. 10.1104/pp.105.070508 PubMed DOI PMC
Wright D. A., Townsend J. A., Winfrey R. J., Jr., Irwin P. A., Rajagopal J. (2005). High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J. 44 693–705. 10.1111/j.1365-313X.2005.02551.x PubMed DOI
Xia T., Apse M. P., Aharon G. S., Blumwald E. (2002). Identification and characterization of a NaCl-inducible vacuolar Na+/H+ antiporter in Beta vulgaris. Physiol. Plant. 116 206–212. 10.1034/j.1399-3054.2002.1160210.x PubMed DOI
Xie X., Ma X., Zhu Q., Zeng D., Li G., Liu Y. G. (2017). CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Mol. Plant. 10 1246–1249. 10.1016/j.molp.2017.06.004 PubMed DOI
Xiong L., Lee H., Ishitani M., Zhu J. K. (2002). Regulation of osmotic stress-responsive gene expression by theLOS6/ABA1 locus in Arabidopsis. J. Biol. Chem. 277 8588–8596. 10.1074/jbc.M109275200 PubMed DOI
Xu B., Wang Y., Zhang S., Guo Q., Jin Y., Chen J., et al. (2017). Transcriptomic and physiological analyses of Medicago sativa L. roots in response to lead stress. PLoS One 12:e0175307 10.1371/journal.pone.0175307 PubMed DOI PMC
Yacoubi R., Job C., Belghazi M., Chaibi W., Job D. (2011). Toward characterizing seed vigor in alfalfa through proteomic analysis of germination and priming. J. Proteome Res. 10 3891–3903. 10.1021/pr101274f PubMed DOI
Yacoubi R., Job C., Belghazi M., Chaibi W., Job D. (2013). Proteomic analysis of the enhancement of seed vigour in osmoprimed alfalfa seeds germinated under salinity stress. Seed Sci. Res. 23 99–110. 10.1017/S0960258513000093 DOI
Yang S., Gao M., Xu C., Gao J., Deshpande S., Lin S., et al. (2008). Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proc. Natl. Acad. Sci. U.S.A. 105 12164–12169. 10.1073/pnas.0802518105 PubMed DOI PMC
Yang S. S., Tu Z. J., Cheung F., Xu W. W., Lamb J. F., Jung H. J. G., et al. (2011). Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems. BMC genom. 12:199 10.1186/1471-2164-12 PubMed DOI PMC
Yang S. S., Xu W. W., Tesfaye M., Lamb J. F., Jung H. J. G., VandenBosch K. A., et al. (2010). Transcript profiling of two alfalfa genotypes with contrasting cell wall composition in stems using a cross-species platform: optimizing analysis by masking biased probes. BMC genom. 11:323 10.1186/1471-2164-11-323 PubMed DOI PMC
Yin P., Ma Q., Wang H., Feng D., Wang X., Pei Y., et al. (2020). SMALL Leaf and BUSHY1 controls organ size and lateral branching by modulating the stability of BIG SEEDS1 in Medicago truncatula. New Phytol. [Epub ahead of print] 10.1111/nph.16449 PubMed DOI PMC
Young N. D., Debellé F., Oldroyd G. E., Geurts R., Cannon S. B., Udvardi M. K., et al. (2011). The medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480 520–524. 10.1038/nature10625 PubMed DOI PMC
Yu L. X., Liu X., Boge W., Liu X. P. (2016). Genome-wide association study identifies loci for salt tolerance during germination in autotetraploid alfalfa (Medicago sativa L.) using genotyping-by-sequencing. Front. Plant Sci. 7:956 10.3389/fpls.2016.00956 PubMed DOI PMC
Yu L. X., Zheng P., Zhang T., Rodringuez J., Main D. (2017). Genotyping-by-sequencing-based genome-wide association studies on Verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.). Mol. Plant Pathol. 18 187–194. 10.1111/mpp.12389 PubMed DOI PMC
Zeng N., Yang Z., Zhang Z., Hu L., Chen L. (2019). Comparative transcriptome combined with proteome analyses revealed key factors involved in alfalfa (Medicago sativa) response to waterlogging stress. Int. J. Mol. Sci. 20:1359 10.3390/ijms20061359 PubMed DOI PMC
Zhang C., Shi S. (2018). Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to PEG-induced osmotic stress. Front Plant Sci. 9:242 10.3389/fpls.2018.00242 PubMed DOI PMC
Zhang H., Zhang J., Wei P. (2014). The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 12 797–807. 10.1111/pbi.12200 PubMed DOI
Zhang J. (2004). Harvesting Inducible Gene And Promoters In Alfalfa. Dissertation thesis, University of Guelph, Guelph, ON.
Zhang L. Q., Niu Y. D., Huridu H., Hao J. F., Qi Z., Hasi A. (2014). Salicornia europaea L. Na+/H+ antiporter gene improves salt tolerance in transgenic alfalfa (Medicago sativa L.). Genet. Mol. Res. 13 5350–5360. 10.4238/2014.July.24.14 PubMed DOI
Zhang S., Shi Y., Cheng N., Du H., Fan W., Wang C. (2015). De novo characterization of fall dormant and nondormant alfalfa (Medicago sativa L.) leaf transcriptome and identification of candidate genes related to fall dormancy. PloS One 10:e0122170 10.1371/journal.pone.0122170 PubMed DOI PMC
Zhang T., Yu L. X., Zheng P., Li Y., Rivera M., Main D., et al. (2015). Identification of loci associated with drought resistance traits in heterozygous autotetraploid alfalfa (Medicago sativa L.) using genome-wide association studies with genotyping by sequencing. PLoS One 10:e0138931 10.1371/journal.pone.0138931 PubMed DOI PMC
Zhang Y. M., Liu Z. H., Wen Z. Y., Zhang H. M., Yang F., Guo X. L. (2012). The vacuolar Na+- H+ antiport gene TaNHX2 confers salt tolerance on transgenic alfalfa (Medicago sativa). Funct. Plant Biol. 39 708–716. 10.1071/FP12095 PubMed DOI
Zhao B., Liang R., Ge L., Li W., Xiao H., Lin H., et al. (2007). Identification of drought-induced microRNAs in rice. Biochem. Biophys. Res. Comm. 354 585–590. 10.1016/j.bbrc.2007.01.022 PubMed DOI
Zhou C., Han L., Pislariu C., Nakashima J., Fu C., Jiang Q., et al. (2011). From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiol. 157 1483–1496. 10.1104/pp.111.185140 PubMed DOI PMC
Zhou M., Luo H. (2013). MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant Mol. Biol. 83 59–75. 10.1007/s11103-013-0089-1 PubMed DOI
Zhu J. K. (2001). Plant salt tolerance. Trends Plant Sci. 6 66–71. 10.1016/S1360-1385(00)01838-0 PubMed DOI
Zhu J. K. (2002). Salt and drought stress signal transduction in plants. Ann. Rev. Plant Biol. 53 247–273. 10.1146/annurev.arplant.53.091401.143329 PubMed DOI PMC
Zipfel C. (2014). Plant pattern-recognition receptors. Trends Immunol. 35 345–351. 10.1016/j.it.2014.05.004 PubMed DOI