Array of Synthetic Oligonucleotides to Generate Unique Multi-Target Artificial Positive Controls and Molecular Probe-Based Discrimination of Liposcelis Species
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26086728
PubMed Central
PMC4472718
DOI
10.1371/journal.pone.0129810
PII: PONE-D-15-12229
Knihovny.cz E-resources
- MeSH
- Insect Control MeSH
- DNA genetics isolation & purification MeSH
- Insecta genetics MeSH
- Insect Proteins genetics MeSH
- Oligonucleotide Probes chemistry genetics MeSH
- Oligonucleotides chemistry genetics MeSH
- Polymerase Chain Reaction methods MeSH
- Electron Transport Complex IV genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
- Insect Proteins MeSH
- Oligonucleotide Probes MeSH
- Oligonucleotides MeSH
- Electron Transport Complex IV MeSH
Several species of the genus Liposcelis are common insect pests that cause serious qualitative and quantitative losses to various stored grains and processed grain products. They also can contaminate foods, transmit pathogenic microorganisms and cause allergies in humans. The common occurrence of multi-species infestations and the fact that it is difficult to identify and discriminate Liposcelis spp. make accurate, rapid detection and discriminatory tools absolutely necessary for confirmation of their identity. In this study, PCR primers and probes specific to different Liposcelis spp. were designed based on nucleotide sequences of the cytochrome oxidase 1 (CO1) gene. Primer sets ObsCo13F/13R, PeaCo15F/14R, BosCO7F/7R, BruCo5F/5R, and DecCo11F/11R were used to specifically detect Liposcelis obscura Broadhead, Liposcelis pearmani Lienhard, Liposcelis bostrychophila Badonnel, Liposcelis brunnea Motschulsky and Liposcelis decolor (Pearman) in multiplex endpoint PCRs, which amplified products of 438-, 351-, 191-, 140-, and 87-bp, respectively. In multiplex TaqMan qPCR assays, orange, yellow, red, crimson and green channels corresponding to reporter dyes 6-ROXN, HEX, Cy5, Quasar705 and 6-FAM specifically detected L. obscura, L. brunnea, L. bostrychophila, L. pearmani and L. decolor, respectively. All developed primer and probe sets allowed specific amplification of corresponding targeted Liposcelis species. The development of multiplex endpoint PCR and multiplex TaqMan qPCR will greatly facilitate psocid identification and their management. The use of APCs will streamline and standardize PCR assays. APC will also provide the opportunity to have all positive controls in a single tube, which reduces maintenance cost and labor, but increases the accuracy and reliability of the assays. These novel methods from our study will have applications in pest management, biosecurity, quarantine, food safety, and routine diagnostics.
See more in PubMed
Phillips TW, Throne JE. Biorational approaches to managing stored-product insects. Annu Rev Entomol. 2010; 55: 375–397. 10.1146/annurev.ento.54.110807.090451 PubMed DOI
Turner BD, Maude-Roxby H, Pike V. Control of the domestic insect pest Liposcelis bostrychophila (Badonnel) (Psocoptera): an experimental evaluation of the efficiency of some insecticides. Int Pest Contr. 1991; 33: 153–157.
Rees DP. Psocoptera (psocids) as pests of bulk grain storage in Australia: a cautionary tale to industry and researchers In: Credland PF, Armitage DM, Bell CH, Cogan PM, Highley E, editors. Proceedings of the 8th International Working Conference on Stored Product Protection. CAB International, Wallingford, UK; 2003. pp. 59–64.
Phillips TW, Throne JE. Biorational approaches to managing stored-product insects. Annu Rev Entomol. 2010; 55: 375–397. 10.1146/annurev.ento.54.110807.090451 PubMed DOI
McFarlane JA. Damage to milled rice by psocids. Trop Stored Prod Inf. 1982; 44: 3–10.
Kučerová Z. Weight losses of wheat grains caused by psocid infestation (Liposcelis bostrychophila: Liposcelididae: Psocoptera). Plant Prot Sci. 2002; 38: 103–107.
Trematerra P, Stejskal V, Hubert J. The monitoring of semolina contamination by insect fragments using the light filth method in an Italian mill. Food Control. 2011; 22: 1021–1026.
Obr S. Psocoptera of food-processing plants and storages, dwellings and collections of natural objects in Czecholslovakia. Acta Entomol Boehm. 1978; 75: 226–242.
Kalinovic I, Rozman V, Liska A. Significance and feeding of psocids (Liposcelididae, Psocoptera) with microorganisms In: Lorini I, Bacaltchuk B, Beckel H, Deckers D, Sundfeld E, dos Santos JP, et al., editors. Proceedings of the 9th International Working Conference on Stored Product Protection. Brazilian Post-harvest Association—Associação Brasileira de Pós-Colheita (ABRAPOS); 2006. pp. 1087–1094.
Turner BD, Staines NA, Brostoff J, Howe CA, Cooper K. Allergy to psocids In: Wildey KB, editors. Proceedings of the International Conference on Insect Pests in the Urban Environment (ICIPUE). ICIPUE, Heriot-Watt University, Edinburgh, Scotland; 1996. pp. 609.
Wang JJ, Zhao ZM, Li LS. Induced tolerance of the psocid Liposcelis bostrychophila (Psocoptera: Liposcelididae) to controlled atmosphere. Int J Pest Manage. 1999; 45: 75–79.
Beckett S, Morton R. The mortality of three species of Psocoptera, Liposcelis bostrychophila Badonnel, Liposcelis decolor (Pearman), and Liposcelis paeta Pearman, at moderately elevated temperatures. J Stored Prod Res. 2003; 39: 103–115.
Nayak MK, Collins PJ, Pavic H, Kopittke RA. Inhibition of egg development by phosphine in the cosmopolitan pest of stored products Liposcelis bostrychophila (Psocoptera: Liposcelididae). Pest Manag Sci. 2003; 59: 1191–1196. PubMed
Nayak MK, Daglish GJ. Combined treatments of spinosad and chlorpyrifos-methyl for management of resistant psocid pests (Psocoptera: Liposcelididae) of stored grain. Pest Manag Sci. 2007; 63: 104–109. PubMed
Kavallieratos NG, Athanassiou CG, Hatzikonstantinou AN, Kavallieratou HN. Abiotic and biotic factors affect efficacy of chlorfenapyr for control of stored-product insect pests. J Food Prot. 2011; 74: 1288–1299. 10.4315/0362-028X.JFP-10-575 PubMed DOI
Athanassiou CG, Arthur FH, Kavallieratos NG, Throne JE. Efficacy of spinosad and methoprene, applied alone or in combination, against six stored-product insect species. J Pest Sci. 2011; 84: 61–67.
Nayak MK. Psocid and mite pests of stored commodities: small but formidable enemies In: Lorini I, Bacaltchuk B, Beckel H, Deckers D, Sundfeld E, dos Santos JP, et al., editors. Proceedings of the 9th International Working Conference on Stored Product Protection. Brazilian Post-harvest Association—Associação Brasileira de Pós-Colheita (ABRAPOS); 2006. pp. 1061–1073.
Rees DP. Insects of stored products. CSIRO Publishing, Collingwood, Victoria; 2004.
Opit GP, Bonjour EL, Beeby R. Seasonal abundance and distribution of psocids in an animal feed warehouse In: Athanassiou CG, Adler CS, Trematerra P, editors. Proceedings of the International Organisation for Biological and Integrated Control West Palaearctic Region Section Working Group on Integrated Protection of Stored Products; 2011. pp. 111–122.
Athanassiou CG, Kavallieratos NG, Throne JE, Nakas CT. Competition among species of stored-product psocids (Psocoptera) in stored grain. PLoS ONE 2014; 9: e102867 10.1371/journal.pone.0102867 PubMed DOI PMC
Nayak MK, Collins PJ, Reid SR. Efficacy of grain protectants and phosphine against Liposcelis bostrychophila, L. entomophila, and L. paeta (Psocoptera: Liposcelidae). J Econ Entomol. 1998; 9: 1208–1212.
Nayak MK, Collins PJ. Influence of concentration, temperature, and humidity on the toxicity of phosphine to the strongly phosphine resistant psocid Liposcelis bostrychophila Badonnel (Psocoptera: Liposcelididae). Pest Manag Sci. 2008; 64: 971–976. 10.1002/ps.1586 PubMed DOI
Opit GP, Throne JE, Flinn PW. Temporospatial distribution of the psocids Liposcelis entomophila and L. decolor (Psocoptera: Liposcelididae) in steel bins containing wheat. J Econ Entomol. 2009; 102: 1369–1376. PubMed
Lienhard C. Revision of the western Palaearctic species of Liposcelis Motschulsky (Psocoptera: Liposcelididae). Zool Jb Syst. 1990; 117: 117–174.
Bai XG, Cao Y. Two new findings of the genus Liposcelis from the stored grain in China. J Chin Cereals Oils Assoc. 1997;12: 1–4
Lienhard C, Smithers CN: Psocoptera—World Catalogue and Bibliography Instrumenta Biodiversitatis V. Museum d'Histoire Naturelle, Geneve; 745 2002.
Kučerová Z, Li Z, Hromádková J. Morphology of nymphs of common stored product psocids (Psocoptera: Liposcelididae). J Stored Prod Res. 2009; 45: 54–60.
Kučerová Z. Stored product psocids (Psocoptera): External morphology of eggs. Eur J Entomol. 2002; 99: 491–503.
Kučerová Z, Li Z, Hromádková J. Morphology of nymphs of common stored-product psocids (Psocoptera, Liposceliididae). J Stored Prod Res. 2009; 45: 54–60.
Arif M, Ochoa-Corona FM, Opit G, Li ZH, Kučerová Z, Stejskal V, et al. PCR and isothermal-based molecular identification of the stored-product psocid pest Lepinotus reticulatus (Psocoptera: Trogiidae). J Stored Prod Res. 2012; 49: 184–188.
Qin M, Li Z, Kučerová Z, Cao Y, Stejskal V. Rapid discrimination of common species of stored Liposcelis (Psocoptera: Liposcelididae) from China and the Czech Republic based on PCR-RFLP analysis. Eur J Entomol. 2008; 105: 713–717.
Yang Q, Kučerová Z, Li Z, Kalinovic I, Stejskal V, Opit G, et al. Diagnosis of Liposcelis entomophila (Insecta: Psocodea: Liposcelididae) based on morphological characteristics and DNA barcodes. J Stored Prod Res. 2012; 48: 120–125.
Li Z, Kučerová Z, Zhao S, Stejskal V, Opit G, Qin M. Morphological and molecular identification of three geographical populations of the storage pest Liposcelis bostrychophila (Psocoptera). J Stored Prod Res. 2011; 47: 168–172.
Ouyang P, Arif M, Fletcher J, Melcher U, Ochoa-Corona FM. Enhanced reliability and accuracy for field deployable bioforensic detection and discrimination of Xylella fastidiosa subsp. pauca, causal agent of citrus variegated chlorosis using Razor Ex technology and TaqMan quantitative PCR. PLoS ONE. 2013; 8: e81647 10.1371/journal.pone.0081647 PubMed DOI PMC
Arif M, Fletcher J, Marek S, Melcher U, Ochoa-Corona FM. Development of a rapid, sensitive and field deployable Razor Ex BioDetection System and qPCR assay for detection of Phymatotrichopsis omnivora using multiple gene targets. Appl Environ Microbiol. 2013; 79: 2312–2320. 10.1128/AEM.03239-12 PubMed DOI PMC
Arif M, Aguilar-Moreno GS, Wayadande A, Fletcher J, Ochoa-Corona FM. Primer modification improves rapid and sensitive in vitro and field deployable assays for detection of High plains virus variants. Appl Environ Microbiol. 2014; 80: 320–327. 10.1128/AEM.02340-13 PubMed DOI PMC
Caasi DRJ, Arif M, Payton M, Melcher U, Winder L, Ochoa-Corona FM. A multi target, non-infectious and clonable artificial positive control for routine PCR-based assays. J Microbiol Methods. 2013; 95: 229–234. 10.1016/j.mimet.2013.08.017 PubMed DOI PMC
Gautam SG, Opit GP, Giles KL. Population growth and development of the psocid Liposcelis rufa (Psocoptera: Liposcelididae) at constant temperatures and relative humidities. J Econ Entomol. 2010; 103: 1920–1928. PubMed
Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am. 1994; 87: 651–701.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994; 3: 294–299. PubMed
Zhang DX, Hewitt GM. Assessment of the universality and utility of a set of conserved mitochondrial COI primers in insects. Insect Mol Biol. 1997; 6: 143–150. PubMed
Wilcox TP, Hugg L, Zeh JA, Zeh DW. Mitochondrial DNA sequencing reveals extreme genetic differentiation in a cryptic species complex of neotropical pseudoscorpions. Mol Phylogenet Evol. 1997; 7: 208–216. PubMed
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2. Bioinformatics. 2007; 23: 2947–2948. PubMed
Rozen S, Skaletsky HJ. Primer3 on the WWW for general users and for biologist programmers In Krawetz S, Misener S, editors. Bioinformatics Methods and Protocols: Methods in Molecular Biology. New Jersey, Humana Press; 2000. pp. 365–386. PubMed
Arif M, Ochoa-Corona FM. Comparative assessment of 5’ A/T-rich overhang sequences with optimal and sub-optimal primers to increase PCR yields and sensitivity. Mol Biotechnol. 2013; 55: 17–26. 10.1007/s12033-012-9617-5 PubMed DOI
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003; 31: 3406–3415. PubMed PMC
Dobhal S, Arif M, Olsen J, Mendoza-Yerbafría1 A, Aguilar-Moreno GS, Perez-Garcia1 M, Ochoa-Corona FM Sensitive detection and discrimination of five major plant viruses infecting ornamental plants in nursery plants by multiplex reverse transcriptase PCR. Ann Appl Biol. 2015; 166: 286–296.
Yang Q, Zhao S, Kucerova Z, Stejskal V, Opit G, Qin M, et al. Validation of the 16S rDNA and COI DNA Barcoding technique for rapid molecular identification of stored product psocids (Insecta: Psocodea: Liposcelididae). J Econ Entomol. 2013; 106: 419–425. PubMed
Yang Q, Zhao S, Kucerova Z, Opit G, Cao Y, Stejskal V, et al. Rapid molucular diagnosis of the stored-product psocid Liposcelis corrodens (Psocoptera: Liposcelididae): species-specific PCR primers of 16S rDNA and COI. J Stored Prod Res. 2013; 54: 1–7.
Li Z, Kucerova Z, Yang Q, Stejskal V. New record of stored product pest Lepinotus reticulatus (Psocoptera: Trogiidae) from China: Identification through scanning electron microscopy and DNA barcode. Afr J Biotechnol. 2012; 11: 15460–15464.
Saccaggi DL, Kruger K, Pietersen G. A multiplex PCR assay for the simultaneous identification of three mealybug species (Hemiptera: Pseudococcidae). Bull Entomol Res. 2008; 98: 27–33. PubMed